亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Sharp Weighted Estimates for a Class of n-dimensional Hardy-Steklov Operators?

        2011-12-27 07:06:52ZHENGQINGYUANDSHISHAOGUANG

        ZHENG QING-YU AND SHI SHAO-GUANG

        (Department of Mathematics,Linyi University,Linyi,Shandong,276005)

        Sharp Weighted Estimates for a Class of n-dimensional Hardy-Steklov Operators?

        ZHENG QING-YU AND SHI SHAO-GUANG

        (Department of Mathematics,Linyi University,Linyi,Shandong,276005)

        In this paper,we study one class ofn-dimensional Hardy-Steklov operators which has important applications in the technical analysis in equity markets. We establish their weighted boundedness and the corresponding operator norms on both Lp(Rn)and BMO(Rn).

        Hardy-Littlewood average,Hardy-Steklov operator,BMO

        1 Introduction

        Let a function w(x)≥ 0,x∈[a,b]with 0< a< b,be given.Then for a measurable function f:Rn→C,the n-dimensional weighted Hardy-Steklov operators which we study are de fi ned as

        When n=1,(1.1)and(1.2)become the classical Hardy-Steklov operators(HSO).

        De fi nition 1.1[1]We call an operator

        an HSO if the functionsa(x)andb(x)satisfy

        The corresponding moving averaging operator of HSO is de fi ned by

        This operator in its various forms is of considerable importance to the technical analysts in the study of equity markets.These technical analysts try to predict the future of the stock price or the future of an equity market solely on the base of the past performance of the stock price or market valuation,respectively.

        The study of Tw([a,b])andseems to be of interest as it is related closely to the Hardy-Littlewood maximal operators in harmonic analysis(see[2])and technical analysis in the study of equlity markets(see[1]).For example,if we make the change of variable t′=t/x,then(1.1)and(1.2)become

        In what follows,for each number λ>0 and cube Q?Rn,let λQ be the cube whose measure has λ|Q|,and whose center is the same as that of Q.For the standard work on BMO(Rn),we refer the reader to[6],[7],[9]and[10].

        Inspired by the work in[1],[4]and[7],we study the norm estimates of Tw([a,b])andin Section 2.

        2 Main Results

        We first establish the boundedness of Tw([a,b])on Lp(Rn).

        Theorem 2.1Letw≥0,1≤p≤∞.Then the following two statements are equivalent:

        Proof.We only need to consider p∈[1,∞)for the case p=∞ is trivial.Suppose that (2.1)holds.It is sufficient to show that there exists a constant C>0 such that

        An application of Minkowski’s inequality yields

        which shows(2.3).

        We are now in a position to show the converse.If Tw([a,b])is a bounded operator on Lp(Rn),then there exists a constant C>0 such that

        Applying the inequality(2.4)to fε,by an elementary integral calculation we have

        We get(2.1)by letting ε→0.

        When(2.1)is true,Tw([a,b])is a bounded operator on Lp(Rn),so we further get

        In order to deduce(2.2)from(2.1),we assume otherwise that(2.2)were not true.A use of (2.9)derives that there is a positive number k such that

        Obviously,the inequality(2.11)contradicts(2.10),so we get(2.2)which completes the proof of Theorem 2.1.

        Next,we deal with the boundedness of T on BMO(Rn).

        Theorem 2.2Letw≥0,1≤p≤∞.Then the following two statements are equivalent:

        Proof.Assume that(2.12)holds.If f∈BMO(Rn),then for any cube Q we apply the Fubini’s theorem to obtain the equalities

        [1]Kufner,A.and Persson,L.E.,Weighted Inequalites of Hardy Type,World Scienti fi c Publishing,Co.Pte.Lte,NJ,2003.

        [2]Stein,E.M.,Harmonic Analysis:Real-Variable Methods,Orthogonality,and Oscillatory Integrals,Princeton Univ.Press,Princeton,NJ,1993.

        [3]Hardy,G.H.,Note on a theorem of Hilbert,Math.Z.,6(1920),314–317.

        [4]Xiao,J.,Lpand BMO bounds of weighted Hardy-Littlewood averages,J.Math.Anal.Appl., 262(2001),660–666.

        [5]Zheng,Q.Y.and Fu,Z.W.,Lipschitz estimates for commutators of n-dimensional fractional Hardy operators,Comm.Math.Res.,25(2009),241–245.

        [6]Fu,Z.W.,Liu,Z.G.,Lu,S.Z.and Wang,H.B.,Characterization for commutators of ndimensional fractional Hardy operators,Sci.China(Ser.A),50(2007),1418–1426.

        [7]Fu,Z.W.,Liu,Z.G.and Lu,S.Z.,Commutators of weighted Hardy operators,Proc.Amer. Math.Soc.,137(2009),3319–3328.

        [8]Bennett,C.,Devore,R.A.and Sharpley,R.,Weak L∞and BMO,Ann.Math.,113(1981), 601–611.

        [9]Carton-Lebrun,C.and Fosset,M.,Moyennes et quotients de Taylor dans BMO,Bull.Soc. Roy.Sci.Lige,2(1984),85–87.

        [10]Fe ff erman,C.,Characterizations of bounded mean oscillation,Bull.Amer.Math.Soc., 77(2002),587–588.

        Communicated by Ji You-qing

        42B25,42B99

        A

        1674-5647(2011)04-0343-06

        date:Sept.19,2010.

        The NSF(10901076,10931001)of China.

        久久久久久一级毛片免费无遮挡| 久久精品国产亚洲av香蕉| 午夜福利院电影| 在线成人福利| 大屁股流白浆一区二区| 亚洲麻豆视频免费观看| 亚洲国产午夜精品理论片在线播放| 91av精品视频| 女同av免费在线播放| 无遮挡很爽很污很黄的女同| 少妇无码av无码专区| 亚洲AV无码国产成人久久强迫| 麻豆av在线免费观看精品| 亚洲综合极品美女av| 国产97在线 | 中文| 亚洲欧美日韩国产精品网| 国产我不卡在线观看免费| 亚洲中文字幕久久精品蜜桃| 久久棈精品久久久久久噜噜| 久久精品午夜免费看| 沐浴偷拍一区二区视频| 欧美乱人伦人妻中文字幕| 四虎欧美国产精品| 色老板在线免费观看视频日麻批| 国产成人精品无码免费看| 99久久国产福利自产拍| 日韩国产有码在线观看视频| 久久伊人精品色婷婷国产| а天堂中文最新一区二区三区| 无码的精品免费不卡在线| 蜜桃av福利精品小视频| 久久精品国产99久久久| 亚洲熟妇丰满大屁股熟妇| 中文字幕第一页在线无码一区二区| 中文字幕第一页人妻丝袜| 无码人妻av免费一区二区三区| 伊人久久大香线蕉在观看| 成人黄色片久久久大全| 在线播放免费人成毛片乱码| 手机看片久久国产免费| 国内精品国产三级国产avx|