禹曉紅, 宋曉秋, 李玉霞
(中國礦業(yè)大學(xué) 理學(xué)院,江蘇 徐州 221008)
一類線性算子半群的收斂性
禹曉紅, 宋曉秋, 李玉霞
(中國礦業(yè)大學(xué) 理學(xué)院,江蘇 徐州 221008)
為得到C0半群序列收斂于C0半群的條件,利用算子半群與無窮小生成元的關(guān)系,討論了C0半群的收斂性和算子序列逼近問題。在 Banach空間上,借助無窮小生成元的強(qiáng)收斂性得出其生成半群的強(qiáng)收斂性。借助定義有界線性算子Ln,將該結(jié)論推廣到了一般的Banach空間序列上,進(jìn)一步完善了Banach空間上算子半群的收斂性理論。
C0半群;半群序列;無窮小生成元;收斂性;算子序列逼近;抽象柯西問題
設(shè)X表示Banach空間,B(X)表示X上全體有界線性算子構(gòu)成的Banach空間。
[1] PAZYA.Semigroupsof linearoperators and applications to partial differential equations[M].New York:Springer,1983.
[2] L I Y C,SHAW S Y.On generators of integratedC-semigroups andC-cosine function[J].Semigroup Forum,1993,47(1): 29-35.
[3] DELAUBENFELS R.C-semigroups and the cauchy problem [J].J FunctAnal,1993,111(1):44-61.
[4] L I Y C,SHAW S Y.N-times integratedC-semigroups and the abstract cauchy problem[J].Taiwanese Journal of Mathematics, 1997,1(1):75-102.
[5] 宋曉秋,彭愛民,王彩俠.C-半群與積分半群的概率型逼近[J].南京大學(xué)學(xué)報:數(shù)學(xué)半年刊,2003,20(2):215-225.
[6] 曹德俠,宋曉秋,榮 嶸.n次積分C半群的Laplace逆變換[J].徐州師范大學(xué)學(xué)報:自然科學(xué)版,2004,22(1):7-9.
[7] 李慧敏,宋曉秋,趙月英.雙連續(xù)n次積分C余弦函數(shù)的逼近定理[J].應(yīng)用泛函分析學(xué)報,2010,12(3):249-253.
[8] YOUNG S L.Covergence ofC-semigroups[J].Kangweon-KyungkiMath Jour,1998,6(1):9-15.
[9] 張祥芝,宋曉秋,劉鈞文.n次積分C-半群的收斂性[J].中國礦業(yè)大學(xué)學(xué)報,2006,35(3):423-426.
Convergence of a kind of linear operator sem igroup
YU Xiaohong,SONG X iaoqiu,L I Yuxia
(College of Sciences,China University ofMining&Technology,Xuzhou 221008,China)
Aimed at enablingC0semigroup sequences to converge toC0semigroup,this paper discusses the convergence and operator series approximation ofC0semigroup using the relationship between operator semigroup and infinitesimal generator.In the space ofBanach,the strong convergence of infinitesimal generator results in the strong convergence of the generated semigroup.Besides,using the definition of a bounded linear operatorLn,makes it possible to extend the conclusion to the generalBanach space sequence,thus improving the convergence of semigroup in Banach space.
C0semigroup;semigroup sequence;infinitesimal generator;convergence;sequence of approximation operators;abstract Cauchy problem
O177.2
:A
1671-0118(2011)02-0161-02
2011-01-30
中央高校基本科研業(yè)務(wù)費專項資金資助項目(2010LKSX08)
禹曉紅(1985-),女,山西省大同人,碩士,研究方向:應(yīng)用泛函分析,E-mail:theyuxiaohong@126.com。
(編輯王 冬)