亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類具有Z2-等變性質的平面七次哈密頓向量場的相圖

        2011-11-18 06:38:58李艷梅
        楚雄師范學院學報 2011年9期
        關鍵詞:奇點

        李艷梅

        ( 楚雄師范學院數(shù)學系,云南楚雄675000)

        一類具有Z2-等變性質的平面七次哈密頓向量場的相圖

        李艷梅

        ( 楚雄師范學院數(shù)學系,云南楚雄675000)

        In this paper,by the use of the method of qualitative analysis of differential equations,the phase portraits of a planar septic Hamiltonian vector fields with Z2-equivariant property are given and the parameter space is classified.

        Z2-equivariant property;septic Hamiltonian vector field;singular point;phase portrait

        In recent decades,the phase portraits of planar quintic Hamiltonian vector fields with equivariant property have been discussed[1~5],but few papers have discussed the phase portraits of planar septic Hamiltonian vector fields.In this paper,we will classify the phase portraits of following planar septic Hamiltonian vector fields with equivariant property,

        where is a parameter with k>1

        1 Properties of the Singular Points

        The Jacobian of this system is

        in which

        φ2(y) =(y2-1)(y2-k)(y2-2k+1)+2y2[(y2-k)(y2-2k+1)+(y2-1)(y2-2k+1)+(y2-1)(y2-k)]

        Discussing the Jacobians of these singular points,we have no difficulty in obtaining the following results:

        Theorem 1The singular points(0,0),( ± 1.2,0),(0,m),( ± 1,1),( ± 1.3,1),( ± 1.2,m),( ± 1,n) ,and( ± 1.3,n)are center,and the others are saddle points.

        2 Phase Portraits of the System(1)

        The Hamiltonian of the system is

        H(x,y)=[3x8-17.28x6+36.1632x4-32.4864x2+3y8-12ky6+6(2k2+2k-1)y4-12(2k2- k)y2]/24

        Obviously,the function H(x,y)satisfies the equality H(x,y)=H(x,0)+H(0,y),and it is not difficult to get

        H( ± 1,0)=H(± c,0)= - 0.4418,H(± 1.2,0)= - 0.4371148,

        H(0,1)=H(0,n)= - (2k - 1)2/8,H(0,m)=k2(k2- 4k+2)/8,

        H(0,m) - H(0,1)=(k - 1)4/8,H( ± 1,0)=H( ± c,0) < H( ± 1.2,0)

        and H(0,1)=H(0,n) < H(0,m)

        Comparing the Hamiltonians of the singular points,we obtain the following results.

        Theorem 2

        (a)If 1 < k < 1.44,the phase portrait of the system(1)is shown as Fig.1(a).

        (b)If k=1.44,the phase portrait of the system(1)is shown as Fig.1(b).

        (c)If 1.44 < k < 2.3711309,the phase portrait of the system(1)is shown as Fig.1(c).

        (d)If k=2.3711309,the phase portrait of the system(1)is shown as Fig.1(d).

        (e)If2.3711309 < k < 3.4142135,the phase portrait of the system(1)is shown as Fig.1(e).

        (f)If k=3.4142135,the phase portrait of the system(1)is shown as Fig.1(f).

        (g)If k > 3.4142135,the phase portrait of the system(1)is shown as Fig.1(g).

        Proof Because H(x,y)=H(x,0)+H(0,y),H( ± 1,0)=H( ± c,0)and H(0,1)=H(0,m)we always have H( ±1,1)=H( ± c,1)=H( ±1,n)=H( ± c,n),H( ±1,m)=H( ± c,m),and H( ± 1.2,1)=H( ± 1.2,n),We separately denote H(0,0),H( ± 1,0),H( ± 1.2,0),H(0,1),H(0,m),H( ± 1,1),H( ± 1,m),H( ± 1.2,1)and H( ± 1.2,m)by h00,h10,hb0,h01,h0m,h11,h1m,hb1,and hbm.

        (a)When 1<k<1.44,the Hamiltonians of the singular points satisfy the relations

        h11<h1m<hb1<hbm<h10≤h01<h0m<h00

        or h11<h1m<hb1<hbm<h10<h01<hb0<h0m<h00

        so the phase portrait is shown as Fig.1(a).

        (b)When k=1.44,we have h10=h01,hb0=h0m,and the Hamiltonians of the singular points satisfy the relations

        h11<h1m=hb1<hbm<h10=h01<hb0=h0m<h00

        so the phase portrait is shown as Fig.1(b).

        (c)When1.44<k<2.3711309 the Hamiltonians of the singular points satisfy one of the following relations

        h01<hb1<h1m<hbm<h01<h0m≤h10<hb0<h00,

        h11<hb1<h1m<hbm≤h01<h0m<h10<hb0<h00,

        h11<hb1<h1m<h01<hbm<h0m<h10<hb0<h00,

        so the phase portrait is shown as Fig.1(c).

        (d)When k=2.3711309,we get h1m=h01,and the Hamiltonians of the singular points satisfy the relations

        h11<hb1<h1m=h01<hbm<h0m<h10<hb0<h00,

        so the phase portrait is shown as Fig.1(d).

        (e)When 2.3711309<k<3.4142135,the Hamiltonians of the singular points satisfy one of the following relations

        h11<hb1<h01<h1m<hbm<h0m≤h10<hb0<h00,

        h11<hb1<h01<h1m<hbm<h10<h0n≤hb0<h00,

        h11<hb1<h01<h1m<hbm≤h10<hb0<h0m<h00,

        h11<hb1<h01<h1m<h10<hbm<hb0<h0m<h00,

        so the phase portrait is shown as Fig.1(e).

        (f)When k=3.4142135,we obtain h0m=0,and the Hamiltonians of the singular points satisfy the relations

        h11<hb1<h01<h1m=h10<hbm=hb0<h0m=h00,

        so the phase portrait is shown as Fig.1(f).

        (g)When k>3.4142135,we obtain h0m>0,and the Hamiltonians of the singular points satisfy one of the following relations

        h11<hb1<h01<h10<h1m<hb0<hbm<h00<h0m,

        h11<hb1<h01<h10<hb0≤h1m<hbm<h00<h0m,

        h11<hb1<h01<h10<hb0<h1m<hbm≤h00<h0m,

        h11<hb1<h01<h10<hb0<h1m≤h00<hbm<h0m,

        h11<hb1<h01<h10<hb0<h00<h1m<hbm<h0m,

        so the phase portrait is shown as Fig.1(g).

        Fig.1(a) ~ (g)The phase portrait of Sy.(1)(a)when(b)when(c)when(d)when(e)when(f)when(g)when

        [1]Chen Long-wei,Liu Zhongrong.Classification of phase portraits about planar quintic -equivariant vector fields[C].Proceedings of the third international conference on nonlinear mechanics.Shanghai University press,1998:769—772.

        [2]Li Yan -mei.The global properties of some planar quintic Hamiltonian vector field with equivariant property[J].Journal of Yunnan University,2001,23(2):87—90.

        [3]Li Yan - mei.The classification of phase portraits about some Hamiltonian vector field with equivariant property[J].Journal of Yunnan Normal University,2003,23(6):5—7.

        [4]Chen Guo-wei,Yang Xinan.The Topological classification of plane phase diagram of a class of quintic Hamiltonian system[J].Mathematica Scientia,2004,24A(6):737—751.

        [5]Li Yanmei.Classification of phase portraits of planar quintic Hamiltonian vector field with equivariant property[C].Proceedings of the international conference on nonlinear mechanics.Shanghai University press,2007:1534—1538.

        The Phase Portraits of a type of Planar Septic Hamiltonian Vector Field with Z2-Equivariant Property*

        李艷梅
        ( 楚雄師范學院,云南楚雄675000)

        O175

        A

        1671-7406(2011)09-0047-04

        云南省應用基礎研究項目:2008ZC158M。

        2011-06-20

        李艷梅 (1966—),女,教授,主要從事非線性微分方程研究。

        (責任編輯 劉洪基)

        摘 要:本文給出了一類具有Z2-等變性質的七次平面哈密頓向量場的全局相圖,并對參數(shù)空間進行了劃分。

        關鍵詞:七次哈密頓向量場;Z2-等變性質;奇點;相圖

        猜你喜歡
        奇點
        ChatGPT與奇點臨近——論查爾莫斯人工智能奇點的哲學論證
        科學與社會(2023年3期)2023-10-24 07:31:12
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        奇點迷光(上)
        軍事文摘(2020年14期)2020-12-17 06:27:46
        青春草在线视频免费观看| 一区二区三区手机看片日本韩国| 久久久亚洲免费视频网| 人妻丰满av无码中文字幕| 国产剧情麻豆女教师在线观看| 欧美亚洲韩国国产综合五月天| 亚洲一区二区三区亚洲| 日韩亚洲中文有码视频| 99在线精品免费视频九九视| 98在线视频噜噜噜国产| 女同视频网站一区二区| 97精品人妻一区二区三区蜜桃| 欧美黑吊大战白妞| 麻豆五月婷婷| 国产视频一区二区三区免费| 国产激情久久久久久熟女老人| 精品一区二区三区免费播放| 国产精品99久久国产小草| 中文字幕亚洲高清精品一区在线| 国产成人亚洲精品无码青| 大地资源在线播放观看mv| 亚洲AV无码一区二区一二区色戒 | 国产精品天干天干| 少妇对白露脸打电话系列| 国产盗摄XXXX视频XXXX| 丁香婷婷六月综合缴清| 亚洲av日韩综合一区二区三区| 在线天堂中文字幕| 亚洲av色香蕉第一区二区三区 | 国产精品久久久久久一区二区三区| 欧美高大丰满freesex| 亚洲精品二区在线观看| 神马影院日本一区二区| 精品深夜av无码一区二区老年| 久久国产精99精产国高潮| 91精品国产高清久久福利| 国产婷婷色一区二区三区在线| 天天天综合网| 日本激情一区二区三区| 欧美伦费免费全部午夜最新| 国产一区二区三区av在线无码观看 |