亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類具有Z2-等變性質的平面七次哈密頓向量場的相圖

        2011-11-18 06:38:58李艷梅
        楚雄師范學院學報 2011年9期
        關鍵詞:奇點

        李艷梅

        ( 楚雄師范學院數(shù)學系,云南楚雄675000)

        一類具有Z2-等變性質的平面七次哈密頓向量場的相圖

        李艷梅

        ( 楚雄師范學院數(shù)學系,云南楚雄675000)

        In this paper,by the use of the method of qualitative analysis of differential equations,the phase portraits of a planar septic Hamiltonian vector fields with Z2-equivariant property are given and the parameter space is classified.

        Z2-equivariant property;septic Hamiltonian vector field;singular point;phase portrait

        In recent decades,the phase portraits of planar quintic Hamiltonian vector fields with equivariant property have been discussed[1~5],but few papers have discussed the phase portraits of planar septic Hamiltonian vector fields.In this paper,we will classify the phase portraits of following planar septic Hamiltonian vector fields with equivariant property,

        where is a parameter with k>1

        1 Properties of the Singular Points

        The Jacobian of this system is

        in which

        φ2(y) =(y2-1)(y2-k)(y2-2k+1)+2y2[(y2-k)(y2-2k+1)+(y2-1)(y2-2k+1)+(y2-1)(y2-k)]

        Discussing the Jacobians of these singular points,we have no difficulty in obtaining the following results:

        Theorem 1The singular points(0,0),( ± 1.2,0),(0,m),( ± 1,1),( ± 1.3,1),( ± 1.2,m),( ± 1,n) ,and( ± 1.3,n)are center,and the others are saddle points.

        2 Phase Portraits of the System(1)

        The Hamiltonian of the system is

        H(x,y)=[3x8-17.28x6+36.1632x4-32.4864x2+3y8-12ky6+6(2k2+2k-1)y4-12(2k2- k)y2]/24

        Obviously,the function H(x,y)satisfies the equality H(x,y)=H(x,0)+H(0,y),and it is not difficult to get

        H( ± 1,0)=H(± c,0)= - 0.4418,H(± 1.2,0)= - 0.4371148,

        H(0,1)=H(0,n)= - (2k - 1)2/8,H(0,m)=k2(k2- 4k+2)/8,

        H(0,m) - H(0,1)=(k - 1)4/8,H( ± 1,0)=H( ± c,0) < H( ± 1.2,0)

        and H(0,1)=H(0,n) < H(0,m)

        Comparing the Hamiltonians of the singular points,we obtain the following results.

        Theorem 2

        (a)If 1 < k < 1.44,the phase portrait of the system(1)is shown as Fig.1(a).

        (b)If k=1.44,the phase portrait of the system(1)is shown as Fig.1(b).

        (c)If 1.44 < k < 2.3711309,the phase portrait of the system(1)is shown as Fig.1(c).

        (d)If k=2.3711309,the phase portrait of the system(1)is shown as Fig.1(d).

        (e)If2.3711309 < k < 3.4142135,the phase portrait of the system(1)is shown as Fig.1(e).

        (f)If k=3.4142135,the phase portrait of the system(1)is shown as Fig.1(f).

        (g)If k > 3.4142135,the phase portrait of the system(1)is shown as Fig.1(g).

        Proof Because H(x,y)=H(x,0)+H(0,y),H( ± 1,0)=H( ± c,0)and H(0,1)=H(0,m)we always have H( ±1,1)=H( ± c,1)=H( ±1,n)=H( ± c,n),H( ±1,m)=H( ± c,m),and H( ± 1.2,1)=H( ± 1.2,n),We separately denote H(0,0),H( ± 1,0),H( ± 1.2,0),H(0,1),H(0,m),H( ± 1,1),H( ± 1,m),H( ± 1.2,1)and H( ± 1.2,m)by h00,h10,hb0,h01,h0m,h11,h1m,hb1,and hbm.

        (a)When 1<k<1.44,the Hamiltonians of the singular points satisfy the relations

        h11<h1m<hb1<hbm<h10≤h01<h0m<h00

        or h11<h1m<hb1<hbm<h10<h01<hb0<h0m<h00

        so the phase portrait is shown as Fig.1(a).

        (b)When k=1.44,we have h10=h01,hb0=h0m,and the Hamiltonians of the singular points satisfy the relations

        h11<h1m=hb1<hbm<h10=h01<hb0=h0m<h00

        so the phase portrait is shown as Fig.1(b).

        (c)When1.44<k<2.3711309 the Hamiltonians of the singular points satisfy one of the following relations

        h01<hb1<h1m<hbm<h01<h0m≤h10<hb0<h00,

        h11<hb1<h1m<hbm≤h01<h0m<h10<hb0<h00,

        h11<hb1<h1m<h01<hbm<h0m<h10<hb0<h00,

        so the phase portrait is shown as Fig.1(c).

        (d)When k=2.3711309,we get h1m=h01,and the Hamiltonians of the singular points satisfy the relations

        h11<hb1<h1m=h01<hbm<h0m<h10<hb0<h00,

        so the phase portrait is shown as Fig.1(d).

        (e)When 2.3711309<k<3.4142135,the Hamiltonians of the singular points satisfy one of the following relations

        h11<hb1<h01<h1m<hbm<h0m≤h10<hb0<h00,

        h11<hb1<h01<h1m<hbm<h10<h0n≤hb0<h00,

        h11<hb1<h01<h1m<hbm≤h10<hb0<h0m<h00,

        h11<hb1<h01<h1m<h10<hbm<hb0<h0m<h00,

        so the phase portrait is shown as Fig.1(e).

        (f)When k=3.4142135,we obtain h0m=0,and the Hamiltonians of the singular points satisfy the relations

        h11<hb1<h01<h1m=h10<hbm=hb0<h0m=h00,

        so the phase portrait is shown as Fig.1(f).

        (g)When k>3.4142135,we obtain h0m>0,and the Hamiltonians of the singular points satisfy one of the following relations

        h11<hb1<h01<h10<h1m<hb0<hbm<h00<h0m,

        h11<hb1<h01<h10<hb0≤h1m<hbm<h00<h0m,

        h11<hb1<h01<h10<hb0<h1m<hbm≤h00<h0m,

        h11<hb1<h01<h10<hb0<h1m≤h00<hbm<h0m,

        h11<hb1<h01<h10<hb0<h00<h1m<hbm<h0m,

        so the phase portrait is shown as Fig.1(g).

        Fig.1(a) ~ (g)The phase portrait of Sy.(1)(a)when(b)when(c)when(d)when(e)when(f)when(g)when

        [1]Chen Long-wei,Liu Zhongrong.Classification of phase portraits about planar quintic -equivariant vector fields[C].Proceedings of the third international conference on nonlinear mechanics.Shanghai University press,1998:769—772.

        [2]Li Yan -mei.The global properties of some planar quintic Hamiltonian vector field with equivariant property[J].Journal of Yunnan University,2001,23(2):87—90.

        [3]Li Yan - mei.The classification of phase portraits about some Hamiltonian vector field with equivariant property[J].Journal of Yunnan Normal University,2003,23(6):5—7.

        [4]Chen Guo-wei,Yang Xinan.The Topological classification of plane phase diagram of a class of quintic Hamiltonian system[J].Mathematica Scientia,2004,24A(6):737—751.

        [5]Li Yanmei.Classification of phase portraits of planar quintic Hamiltonian vector field with equivariant property[C].Proceedings of the international conference on nonlinear mechanics.Shanghai University press,2007:1534—1538.

        The Phase Portraits of a type of Planar Septic Hamiltonian Vector Field with Z2-Equivariant Property*

        李艷梅
        ( 楚雄師范學院,云南楚雄675000)

        O175

        A

        1671-7406(2011)09-0047-04

        云南省應用基礎研究項目:2008ZC158M。

        2011-06-20

        李艷梅 (1966—),女,教授,主要從事非線性微分方程研究。

        (責任編輯 劉洪基)

        摘 要:本文給出了一類具有Z2-等變性質的七次平面哈密頓向量場的全局相圖,并對參數(shù)空間進行了劃分。

        關鍵詞:七次哈密頓向量場;Z2-等變性質;奇點;相圖

        猜你喜歡
        奇點
        ChatGPT與奇點臨近——論查爾莫斯人工智能奇點的哲學論證
        科學與社會(2023年3期)2023-10-24 07:31:12
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        奇點迷光(上)
        軍事文摘(2020年14期)2020-12-17 06:27:46
        久久av高潮av无码av喷吹| 久久露脸国产精品WWW| 日韩偷拍视频一区二区三区| 国产精品日韩亚洲一区二区| 一本无码中文字幕在线观| 特级婬片国产高清视频| 香蕉视频免费在线| 精品人妻av区二区三区| 性欧美丰满熟妇xxxx性久久久 | 3d动漫精品一区二区三区| 亚洲国产精品久久久久久网站| 激情在线视频一区二区三区| 国产乱人伦偷精品视频免观看 | 成全高清在线播放电视剧| 国产免费人成视频在线播放播| 日本91一区二区不卡| 一本久道综合色婷婷五月| 亚洲最大av资源站无码av网址 | 国产suv精品一区二区6| 亚洲都市校园激情另类| 日韩av一区二区无卡| 国产精品无码一区二区三级| 台湾佬娱乐中文22vvvv | 熟女性饥渴一区二区三区| 亚洲国产精一区二区三区性色| 男女真人后进式猛烈视频网站 | 亚洲精品第一国产综合亚av| 欧洲亚洲视频免费| 亚洲国产日韩综合天堂| 人人妻人人澡人人爽超污| 欧美午夜精品久久久久久浪潮| 国产高清黄色在线观看91| 在线观看国产成人自拍视频| 朝鲜女人大白屁股ass| 国产小屁孩cao大人| 国产黄色一级大片一区二区 | 久久9精品区-无套内射无码| 99热这里有免费国产精品| av男人的天堂第三区| 免费无遮挡无码永久视频| 老熟女多次高潮露脸视频|