亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類具有Z2-等變性質的平面七次哈密頓向量場的相圖

        2011-11-18 06:38:58李艷梅
        楚雄師范學院學報 2011年9期
        關鍵詞:奇點

        李艷梅

        ( 楚雄師范學院數(shù)學系,云南楚雄675000)

        一類具有Z2-等變性質的平面七次哈密頓向量場的相圖

        李艷梅

        ( 楚雄師范學院數(shù)學系,云南楚雄675000)

        In this paper,by the use of the method of qualitative analysis of differential equations,the phase portraits of a planar septic Hamiltonian vector fields with Z2-equivariant property are given and the parameter space is classified.

        Z2-equivariant property;septic Hamiltonian vector field;singular point;phase portrait

        In recent decades,the phase portraits of planar quintic Hamiltonian vector fields with equivariant property have been discussed[1~5],but few papers have discussed the phase portraits of planar septic Hamiltonian vector fields.In this paper,we will classify the phase portraits of following planar septic Hamiltonian vector fields with equivariant property,

        where is a parameter with k>1

        1 Properties of the Singular Points

        The Jacobian of this system is

        in which

        φ2(y) =(y2-1)(y2-k)(y2-2k+1)+2y2[(y2-k)(y2-2k+1)+(y2-1)(y2-2k+1)+(y2-1)(y2-k)]

        Discussing the Jacobians of these singular points,we have no difficulty in obtaining the following results:

        Theorem 1The singular points(0,0),( ± 1.2,0),(0,m),( ± 1,1),( ± 1.3,1),( ± 1.2,m),( ± 1,n) ,and( ± 1.3,n)are center,and the others are saddle points.

        2 Phase Portraits of the System(1)

        The Hamiltonian of the system is

        H(x,y)=[3x8-17.28x6+36.1632x4-32.4864x2+3y8-12ky6+6(2k2+2k-1)y4-12(2k2- k)y2]/24

        Obviously,the function H(x,y)satisfies the equality H(x,y)=H(x,0)+H(0,y),and it is not difficult to get

        H( ± 1,0)=H(± c,0)= - 0.4418,H(± 1.2,0)= - 0.4371148,

        H(0,1)=H(0,n)= - (2k - 1)2/8,H(0,m)=k2(k2- 4k+2)/8,

        H(0,m) - H(0,1)=(k - 1)4/8,H( ± 1,0)=H( ± c,0) < H( ± 1.2,0)

        and H(0,1)=H(0,n) < H(0,m)

        Comparing the Hamiltonians of the singular points,we obtain the following results.

        Theorem 2

        (a)If 1 < k < 1.44,the phase portrait of the system(1)is shown as Fig.1(a).

        (b)If k=1.44,the phase portrait of the system(1)is shown as Fig.1(b).

        (c)If 1.44 < k < 2.3711309,the phase portrait of the system(1)is shown as Fig.1(c).

        (d)If k=2.3711309,the phase portrait of the system(1)is shown as Fig.1(d).

        (e)If2.3711309 < k < 3.4142135,the phase portrait of the system(1)is shown as Fig.1(e).

        (f)If k=3.4142135,the phase portrait of the system(1)is shown as Fig.1(f).

        (g)If k > 3.4142135,the phase portrait of the system(1)is shown as Fig.1(g).

        Proof Because H(x,y)=H(x,0)+H(0,y),H( ± 1,0)=H( ± c,0)and H(0,1)=H(0,m)we always have H( ±1,1)=H( ± c,1)=H( ±1,n)=H( ± c,n),H( ±1,m)=H( ± c,m),and H( ± 1.2,1)=H( ± 1.2,n),We separately denote H(0,0),H( ± 1,0),H( ± 1.2,0),H(0,1),H(0,m),H( ± 1,1),H( ± 1,m),H( ± 1.2,1)and H( ± 1.2,m)by h00,h10,hb0,h01,h0m,h11,h1m,hb1,and hbm.

        (a)When 1<k<1.44,the Hamiltonians of the singular points satisfy the relations

        h11<h1m<hb1<hbm<h10≤h01<h0m<h00

        or h11<h1m<hb1<hbm<h10<h01<hb0<h0m<h00

        so the phase portrait is shown as Fig.1(a).

        (b)When k=1.44,we have h10=h01,hb0=h0m,and the Hamiltonians of the singular points satisfy the relations

        h11<h1m=hb1<hbm<h10=h01<hb0=h0m<h00

        so the phase portrait is shown as Fig.1(b).

        (c)When1.44<k<2.3711309 the Hamiltonians of the singular points satisfy one of the following relations

        h01<hb1<h1m<hbm<h01<h0m≤h10<hb0<h00,

        h11<hb1<h1m<hbm≤h01<h0m<h10<hb0<h00,

        h11<hb1<h1m<h01<hbm<h0m<h10<hb0<h00,

        so the phase portrait is shown as Fig.1(c).

        (d)When k=2.3711309,we get h1m=h01,and the Hamiltonians of the singular points satisfy the relations

        h11<hb1<h1m=h01<hbm<h0m<h10<hb0<h00,

        so the phase portrait is shown as Fig.1(d).

        (e)When 2.3711309<k<3.4142135,the Hamiltonians of the singular points satisfy one of the following relations

        h11<hb1<h01<h1m<hbm<h0m≤h10<hb0<h00,

        h11<hb1<h01<h1m<hbm<h10<h0n≤hb0<h00,

        h11<hb1<h01<h1m<hbm≤h10<hb0<h0m<h00,

        h11<hb1<h01<h1m<h10<hbm<hb0<h0m<h00,

        so the phase portrait is shown as Fig.1(e).

        (f)When k=3.4142135,we obtain h0m=0,and the Hamiltonians of the singular points satisfy the relations

        h11<hb1<h01<h1m=h10<hbm=hb0<h0m=h00,

        so the phase portrait is shown as Fig.1(f).

        (g)When k>3.4142135,we obtain h0m>0,and the Hamiltonians of the singular points satisfy one of the following relations

        h11<hb1<h01<h10<h1m<hb0<hbm<h00<h0m,

        h11<hb1<h01<h10<hb0≤h1m<hbm<h00<h0m,

        h11<hb1<h01<h10<hb0<h1m<hbm≤h00<h0m,

        h11<hb1<h01<h10<hb0<h1m≤h00<hbm<h0m,

        h11<hb1<h01<h10<hb0<h00<h1m<hbm<h0m,

        so the phase portrait is shown as Fig.1(g).

        Fig.1(a) ~ (g)The phase portrait of Sy.(1)(a)when(b)when(c)when(d)when(e)when(f)when(g)when

        [1]Chen Long-wei,Liu Zhongrong.Classification of phase portraits about planar quintic -equivariant vector fields[C].Proceedings of the third international conference on nonlinear mechanics.Shanghai University press,1998:769—772.

        [2]Li Yan -mei.The global properties of some planar quintic Hamiltonian vector field with equivariant property[J].Journal of Yunnan University,2001,23(2):87—90.

        [3]Li Yan - mei.The classification of phase portraits about some Hamiltonian vector field with equivariant property[J].Journal of Yunnan Normal University,2003,23(6):5—7.

        [4]Chen Guo-wei,Yang Xinan.The Topological classification of plane phase diagram of a class of quintic Hamiltonian system[J].Mathematica Scientia,2004,24A(6):737—751.

        [5]Li Yanmei.Classification of phase portraits of planar quintic Hamiltonian vector field with equivariant property[C].Proceedings of the international conference on nonlinear mechanics.Shanghai University press,2007:1534—1538.

        The Phase Portraits of a type of Planar Septic Hamiltonian Vector Field with Z2-Equivariant Property*

        李艷梅
        ( 楚雄師范學院,云南楚雄675000)

        O175

        A

        1671-7406(2011)09-0047-04

        云南省應用基礎研究項目:2008ZC158M。

        2011-06-20

        李艷梅 (1966—),女,教授,主要從事非線性微分方程研究。

        (責任編輯 劉洪基)

        摘 要:本文給出了一類具有Z2-等變性質的七次平面哈密頓向量場的全局相圖,并對參數(shù)空間進行了劃分。

        關鍵詞:七次哈密頓向量場;Z2-等變性質;奇點;相圖

        猜你喜歡
        奇點
        ChatGPT與奇點臨近——論查爾莫斯人工智能奇點的哲學論證
        科學與社會(2023年3期)2023-10-24 07:31:12
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        校中有笑
        奇點迷光(上)
        軍事文摘(2020年14期)2020-12-17 06:27:46
        亚洲VA不卡一区| 精品综合一区二区三区| 性高朝久久久久久久3小时| 亚洲av无码专区亚洲av伊甸园| 欧美老熟妇欲乱高清视频| 99久久精品一区二区三区蜜臀| 国产精品国产三级国产专区51区| 麻豆国产精品一区二区三区| 丁香婷婷激情综合俺也去| 日本一卡2卡3卡四卡精品网站| 男女做爰高清免费视频网站| 中文字幕无码日韩专区免费| 中文字幕无码日韩欧毛| 日韩精品极品在线观看视频| 日韩人妻久久中文字幕| 亚洲av午夜福利精品一区| 成人激情五月天| 精品91精品91精品国产片| 人妖系列在线免费观看| 美女午夜福利视频网址| 国产又色又爽又黄的| 亚洲成在人线av| 国产小视频一区二区三区| 午夜精品久久99蜜桃| 亚洲女同一区二区| 无码人妻精品一区二区三区在线 | 日本高清视频www| 国产一区二区牛影视| 国产最新一区二区三区| 日本最新一区二区三区在线视频| 亚洲精品成人片在线观看精品字幕| 久久久久国产精品免费免费搜索 | 91精品国产乱码久久中文| 特黄做受又粗又长又大又硬| 国产又黄又大又粗视频| 日韩狼人精品在线观看| 人妻少妇艳情视频中文字幕| 国产乱码卡二卡三卡老狼| 精品性高朝久久久久久久| 国产麻豆精品久久一二三| 久久国产精品婷婷激情|