康宏 李振強(qiáng) 閉艷妲
(蘭州大學(xué) 口腔醫(yī)學(xué)研究所,蘭州 730000)
自組裝山羊顳下頜關(guān)節(jié)盤組織工程纖維軟骨模型的構(gòu)建
康宏 李振強(qiáng) 閉艷妲
(蘭州大學(xué) 口腔醫(yī)學(xué)研究所,蘭州 730000)
目的 構(gòu)建山羊顳下頜關(guān)節(jié)盤纖維軟骨自組裝模型,觀察自組裝組織工程纖維軟骨的生物學(xué)特征,為顳下頜關(guān)節(jié)盤及其他組織工程纖維軟骨的進(jìn)一步研究創(chuàng)造條件。方法 分離、培養(yǎng)山羊顳下頜關(guān)節(jié)盤細(xì)胞,按每井5.5×106個(gè)接種到預(yù)制的直徑5mm×深10mm瓊脂糖井內(nèi),每天換液,培養(yǎng)2周,觀察和檢測顳下頜關(guān)節(jié)盤形態(tài)和成分的變化。結(jié)果 接種后1 d,山羊顳下頜關(guān)節(jié)盤細(xì)胞在瓊脂糖井內(nèi)聚集,開始自組裝成一圓盤狀基體,后來逐漸變成圓球形。培養(yǎng)2周時(shí),蘇木精-伊紅染色可觀察到纖維軟骨細(xì)胞呈圓形,周圍有基質(zhì)包繞;Safranin-O/fast green染色顯示自組裝基體內(nèi)纖維軟骨細(xì)胞分泌細(xì)胞外基質(zhì)氨基多糖;picro-sirius red染色可見自組裝基體內(nèi)有大量膠原纖維。Ⅰ型膠原免疫組織化學(xué)染色可見胞漿和細(xì)胞外有棕黃色顆粒,表明自組裝纖維軟骨可以產(chǎn)生與自然關(guān)節(jié)盤組織一致的Ⅰ型膠原成分。結(jié)論 利用瓊脂糖井構(gòu)建的山羊顳下頜關(guān)節(jié)盤自組裝組織工程模型,能產(chǎn)生與自然關(guān)節(jié)盤成分相似的細(xì)胞外基質(zhì),表明組織工程化顳下頜關(guān)節(jié)盤組織的途徑是可行的。
顳下頜關(guān)節(jié)盤; 組織工程; 纖維軟骨
顳下頜關(guān)節(jié)盤是位于下頜髁突和顳骨關(guān)節(jié)窩之間的纖維軟骨樣組織,是顳下頜關(guān)節(jié)(temporomandibular joint,TMJ)行使功能的主要組成部分,以關(guān)節(jié)盤變薄、透明樣變和穿孔等不可逆性病變?yōu)樘卣鞯膰?yán)重顳下頜關(guān)節(jié)紊亂病(temporomandibular disorder,TMD),給患者的進(jìn)食、說話帶來了困難和痛苦,長期以來沒有很好的治療方法,是目前口腔臨床面臨的疑難問題之一。近年來組織工程技術(shù)的發(fā)展為臨床修復(fù)損傷和病變的關(guān)節(jié)盤提供了一種新的治療方向[1]。
顳下頜關(guān)節(jié)盤組織工程的目標(biāo)是在體外組裝出與自然組織相似的復(fù)合基體,以實(shí)現(xiàn)病損關(guān)節(jié)盤的功能替換[2]。以往的組織工程纖維軟骨研究模型大多利用三維支架構(gòu)建[2-6],雖然支架材料不斷改進(jìn),但是仍然存在一些不足,比如抑制細(xì)胞的移動和細(xì)胞之間的信息交流、應(yīng)力遮擋作用阻礙細(xì)胞的機(jī)械信號轉(zhuǎn)導(dǎo)、支架阻礙細(xì)胞生長和細(xì)胞外基質(zhì)重塑、有些固體支架使細(xì)胞表型喪失、支架的不利降解產(chǎn)物及炎癥反應(yīng)等等,以瓊脂糖為模具的自組裝技術(shù)(selfassembly process)因可以克服上述缺點(diǎn)在關(guān)節(jié)軟骨組織工程的研究中已有成功報(bào)道[7-9],但是,TMJ關(guān)節(jié)盤組織與關(guān)節(jié)軟骨不同,細(xì)胞外基質(zhì)以Ⅰ型膠原和氨基多糖(glycosaminoglycans,GAGs)為主而非Ⅱ型膠原,能否采用自組裝技術(shù)進(jìn)行組織構(gòu)建并且能夠產(chǎn)生與自然關(guān)節(jié)盤細(xì)胞外基質(zhì)相似的復(fù)合基體成分還不清楚。因此,本研究旨在探索利用TMJ關(guān)節(jié)盤細(xì)胞體外自組裝構(gòu)建TMJ關(guān)節(jié)盤纖維軟骨復(fù)合基體的可行性。
1月齡山羊,體重10~15 kg,購自蘭州市屠宰場。
1.2.1 關(guān)節(jié)盤纖維軟骨細(xì)胞的分離 將購回的死亡不超過12 h的山羊頭6只,用自來水加洗潔劑洗凈血污,浸沒于75%乙醇中20min,置入超凈工作臺,無菌條件下取出雙側(cè)TMJ盤,剪去周圍組織,浸入75%醫(yī)用乙醇10 s,用含100 U·mL-1雙抗(青霉素、鏈霉素)的PBS液于離心管內(nèi)吹打沖洗3次,移入50mL燒杯,加入少量PBS,用眼科剪將關(guān)節(jié)盤剪成糊狀,約1mm3大小。加入15mL用完全培養(yǎng)基(見單層細(xì)胞培養(yǎng))配置的Ⅰ型膠原酶(2mg·mL-1),移入100mL錐形瓶,牛皮紙封口,于37℃、90 r·min-1搖床內(nèi)消化16 h,100目篩網(wǎng)過濾,1 200 r·min-1離心10min,DMEM重懸洗滌(1 000 r·min-1離心5min)2次,以去除膠原酶,收集的細(xì)胞利用血細(xì)胞計(jì)數(shù)器計(jì)數(shù),6只山羊的關(guān)節(jié)盤獲得1.8×106細(xì)胞,按2×105進(jìn)行單層細(xì)胞培養(yǎng)。備用細(xì)胞源采用凍存液(DMEM:胎牛血清:DMSO=5∶4∶1)置于-82℃冰箱中凍存。
1.2.2 單層細(xì)胞培養(yǎng) 用于細(xì)胞培養(yǎng)的完全培養(yǎng)基是含有2mmol·L-1L-谷氨酰胺、4.5 g·L-1葡萄糖、110mg·L-1丙酮酸鈉的高糖DMEM培養(yǎng)基,其中添加了15%的胎牛血清、1%青-鏈霉素、1%非必需氨基酸、25μL·mL-1抗壞血酸[2]。6只羊頭的原代TMJ盤細(xì)胞接種到8個(gè)25 cm2的培養(yǎng)瓶中,于5%CO2、飽和濕度、37℃恒溫箱內(nèi)培養(yǎng)至70%~90%匯合,然后用每瓶胰蛋白酶(0.25%)1mL消化,傳代至第2代。
1.2.3 自組裝基體制備 加工6個(gè)直徑5mm、長10mm的不銹鋼棒,兩端盡量平整光滑,將其一端黏在48孔板的蓋子內(nèi)面,使之正對48孔板的6個(gè)孔,紫外線照射1 h,然后將消毒融化的2%的瓊脂糖灌注于48孔板與不銹鋼棒相對應(yīng)的孔內(nèi),每孔1mL,合上蓋子,瓊脂糖在室溫下30min成凝膠。然后小心將蓋子連同不銹鋼棒從瓊脂糖中分離,向所形成的瓊脂糖井中加入每井500μL完全培養(yǎng)基,加蓋另一無菌蓋子,在隨后2 d中更換4次培養(yǎng)基,以使培養(yǎng)基完全置換出瓊脂糖中的PBS,使瓊脂糖井模具被培養(yǎng)基完全飽和到細(xì)胞接種時(shí)間為止。然后將150μL含有5.5×106個(gè)細(xì)胞的培養(yǎng)基加在每一個(gè)瓊脂糖井內(nèi)[8],4 h后添加每井350μL培養(yǎng)基,以后每天換液每井500μL,細(xì)胞24 h將自組裝在瓊脂糖井內(nèi)形成圓盤狀基體,培養(yǎng)2周后進(jìn)行各項(xiàng)檢測。
1.2.4 大體觀察 2周時(shí)取出自組裝基體,測量其濕重、直徑、厚度。
1.2.5 組織學(xué)和免疫組織化學(xué)染色 樣品冰凍,14μm切片,蘇木精-伊紅染色觀察基體組織形態(tài),Safranin-O/fast green染色檢測GAGs分布情況,picro-sirius red染色檢查膠原分布。切片用冰丙酮固定,緩沖液沖洗,用過氧化氫/甲醇終止過氧化物酶活動,山羊血清阻斷(SP-9002免疫組化染色試盒),鼠抗Ⅰ型膠原抗體孵育,加入第二抗體(山羊抗小鼠IgG,SP-9002免疫組化染色試盒),DAB顯色,檢測Ⅰ型膠原的分布。
高密度TMJ盤細(xì)胞接種到瓊脂糖井內(nèi)后,在光滑的瓊脂糖表面不貼壁,不伸展,而是細(xì)胞間相互靠近匯聚,4 h后可見在井底瓊脂糖表面形成圓盤狀結(jié)構(gòu),乳白色,直徑約(5.0±0.3)mm,厚約(3.0±0.2)mm,1 d后變成圓球狀,直徑略縮?。▓D1),以后直徑逐漸縮小,10 d后趨于穩(wěn)定,約(1.5±0.1)mm,表面日趨光滑,14 d時(shí)直徑(1.6±0.1)mm,濕重(3.0±0.2)mg,如圖2所示。
圖1 1 d時(shí)自組裝基體形態(tài)Fig 1 Gross morphology of the construct at the first day
圖2 2周時(shí)自組裝基體的正面(左)、側(cè)面(右)形態(tài)Fig 2 Morphology of the construct from frontal(left)and sagittal(right)view at 2 weeks
培養(yǎng)14 d時(shí),蘇木精-伊紅染色可觀察到纖維軟骨細(xì)胞呈圓形,周圍有基質(zhì)包繞(圖3)。Safranin-O/ fast green染色顯示自組裝基體內(nèi)纖維軟骨細(xì)胞分泌細(xì)胞外基質(zhì)GAGs(圖4)。
圖3 纖維軟骨細(xì)胞呈圓形(藍(lán)色),周圍有細(xì)胞外基質(zhì)(粉紅色)包繞 HE ×400Fig 3 Fibrocartilage cells(stained blue)are round,wrapped around by extracellular matrix(stained pink) HE ×400
圖4 自組裝基體內(nèi)的纖維軟骨細(xì)胞周圍可見少量GAGs(紅色)Safranin-O/fast green染色 ×400Fig 4 A little of GAGs(stained red)around the fibrochondrocytes in the construct Safranin-O/fast green staining ×400
picro-sirius red染色可見自組裝基體內(nèi)有大量膠原纖維(圖5)。
圖5 自組裝基體含有大量膠原纖維,尤其是基體外周最多picro-sirius red染色 ×100Fig 5 Numerous collagen fibers in the construct,extremely densely in the periphery of the construct picro-sirius red staining ×100
14 d時(shí),Ⅰ型膠原免疫組織化學(xué)染色可見胞漿和細(xì)胞外有棕黃色顆粒分布(圖6),表明自組裝纖維軟骨有分泌Ⅰ型膠原的能力。
圖6 Ⅰ型膠原表達(dá)于胞漿和細(xì)胞外,呈棕黃色顆粒 SP-9002染色 ×200Fig 6 Expression of collagenⅠwas brown-yellow particles in cytoplasm and extracellular matrix SP-9002 staining ×200
本實(shí)驗(yàn)的目標(biāo)是構(gòu)建與自然關(guān)節(jié)盤細(xì)胞外基質(zhì)成分相似的復(fù)合基體組織。工程化細(xì)胞外基質(zhì)可采取兩種策略,一種是采用結(jié)構(gòu)和性能與細(xì)胞外基質(zhì)相似的生物材料作為支架自上而下進(jìn)行工程化組織的構(gòu)建;另一種是利用特異性能的小分子由下而上進(jìn)行自組裝生成工程化組織,以達(dá)到功能上的仿生[10]。自組裝過程是組織工程一個(gè)獨(dú)特的方法,它能使細(xì)胞源在不需要附著于支架結(jié)構(gòu)的條件下,細(xì)胞彼此之間相互結(jié)合在一起形成功能性的新生組織。這種過程似乎遵循了Steinberg[11]關(guān)于差力黏附的假說,該假說指出單分散細(xì)胞通過細(xì)胞間黏附力的最大化及總自由能的最小化使細(xì)胞聚集并結(jié)合在一起。由于細(xì)胞的接種密度以及不同的黏附力是形成組織性能的決定性因素[12],本實(shí)驗(yàn)采用每150μL 5.5×106個(gè)的高細(xì)胞密度,使得細(xì)胞間距變小,細(xì)胞間黏附力增大,同時(shí),光滑的瓊脂糖井底和井壁極大地減小了聚集自由能,為纖維軟骨細(xì)胞自組裝基體的形成創(chuàng)造了必要條件。
細(xì)胞接種到瓊脂糖井內(nèi)的最初幾天,由于組裝成的基體較為疏松,換液時(shí)應(yīng)盡量避免晃動培養(yǎng)板以防基體碎裂。本實(shí)驗(yàn)利用自組裝技術(shù)構(gòu)建的纖維軟骨基體,在外觀、組織學(xué)和組織化學(xué)上與自然關(guān)節(jié)盤組織相似。Ⅰ型膠原和GAGs是TMJ關(guān)節(jié)盤組織較為特異的標(biāo)志性成分,免疫組織化學(xué)檢測顯示自組裝基體內(nèi)廣泛分布有Ⅰ型膠原成分,Safranin-O/fast green染色也表明自組裝基體內(nèi)關(guān)節(jié)盤細(xì)胞分泌少量細(xì)胞外基質(zhì)GAGs。無支架瓊脂糖凝膠三維培養(yǎng)系統(tǒng)為細(xì)胞間信息的交流和自分泌生長因子的聚集提供便利,維系關(guān)節(jié)盤纖維軟骨細(xì)胞的表型[13]。
自組裝基體在細(xì)胞接種后的第1周出現(xiàn)明顯的外形收縮現(xiàn)象。有人認(rèn)為這種收縮可能與體外培養(yǎng)的纖維軟骨中α-平滑肌肌動蛋白(α-smooth muscle actin,α-SMA)的表達(dá)增多有關(guān),表達(dá)α-SMA的纖維軟骨細(xì)胞會引起細(xì)胞外基質(zhì)收縮、變形,對工程化纖維軟骨構(gòu)建產(chǎn)生不利影響[14]。研究提示堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)[15]和星孢菌素[16]可抑制軟骨細(xì)胞中α-SMA表達(dá)。
另外,有研究對影響自組裝基體生長的外環(huán)境因素包括生長因子和生物力學(xué)刺激的效應(yīng)進(jìn)行了研究。血小板衍生生長因子、bFGF和轉(zhuǎn)化生長因子-β1對接種到二維生長物與聚乙醇酸表面的關(guān)節(jié)盤細(xì)胞的代謝有一定的影響,對細(xì)胞增殖、膠原合成和復(fù)合物的力學(xué)性能具有上調(diào)效應(yīng)和協(xié)同效應(yīng)[3-4,17]。在體外細(xì)胞培養(yǎng)中,靜水壓、直接壓縮力、剪切流環(huán)境等機(jī)械刺激都是纖維軟骨細(xì)胞生存和不斷生成細(xì)胞外基質(zhì)的手段[9,18-19],盡管采用瓊脂糖凝膠三維自組裝模型為研究機(jī)械刺激對工程化組織的作用提供了便利,但是,干預(yù)基體生長的最佳因素目前還不明確。
[1] Allen KD,Athanasiou KA.Tissue engineering of the TMJ disc:A review[J].Tissue Eng,2006,12(5):1183-1196.
[2] Johns DE,Athanasiou KA.Improving culture conditions for temporomandibular joint disc tissue engineering[J].Cells Tissues Organs,2007,185(4):246-257.
[3] Detamore MS,Athanasiou KA.Evaluation of three growth factors for TMJ disc tissue engineering[J].Ann Biomed Eng,2005,33(3):383-390.
[4] Almarza AJ,Athanasiou KA.Evaluation of three growth factors in combinations of two for temporomandibular joint disc tissue engineering[J].Arch Oral Biol,2006,51(3):215-221.
[5] Almarza AJ,Athanasiou KA.Seeding techniques and scaffolding choice for tissue engineering of the temporomandibular joint disk [J].Tissue Eng,2004,10(11/12):1787-1795.
[6] Springer IN,Fleiner B,Jepsen S,et al.Culture of cells gained from temporomandibular joint cartilage on non-absorbable scaffolds[J].Biomaterials,2001,22(18):2569-2577.
[7] Hu JC,Athanasiou KA.A self-assembling process in articular cartilage tissue engineering[J].Tissue Eng,2006,12(4):969-979.
[8] Revell CM,Reynolds CE,Athanasiou KA.Effects of initial cell seeding in self assembly of articular cartilage[J].Ann Biomed Eng, 2008,36(9):1441-1448.
[9] Elder BD,Athanasiou KA.Effects of temporal hydrostatic pressure on tissue-engineered bovine articular cartilage constructs[J].Tissue Eng Part A,2009,15(5):1151-1158.
[10] 曹誼林.組織工程學(xué)[M].北京:科學(xué)出版社,2008:169.
CAO Yi-lin.Tissue engineering[M].Beijing:Science Publishing House,2008:169.
[11] Steinberg MS.Mechanism of tissue reconstruction by dissociated cells.Ⅱ.Time-course of events[J].Science,1962,137:762-763.
[12] Napolitano AP,Chai P,Dean DM,et al.Dynamics of the selfassembly of complex cellular aggregates on micromolded nonadhesive hydrogels[J].Tissue Eng,2007,13(8):2087-2094.
[13] Robinson D,Ash H,Yayon A,et al.Characteristics of cartilage biopsies used for autologous chondrocytes transplantation[J].Cell Transplant,2001,10(2):203-208.
[14] Mueller SM,Schneider TO,Shortkroff S,et al.alpha-smooth muscle actin and contractile behavior of bovine meniscus cells seeded in typeⅠand typeⅡcollagen-GAG matrices[J].J Biomed Mater Res,1999,45(3):157-166.
[15] Martin I,Suetterlin R,Baschong W,et al.Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation[J].J Cell Biochem,2001,83(1):121-128.
[16] Zaleskas JM,Kinner B,Freyman TM,et al.Contractile forces generated by articular chondrocytes in collagen-glycosaminoglycan matrices[J].Biomaterials,2004,25(7/8):1299-1308.
[17] Hanaoka K,Tanaka E,Takata T,et al.Platelet-derived growth factor enhances proliferation and matrix synthesis of temporomandibular joint disc-derived cells[J].Angle Orthod,2006,76(3):486-492.
[18] Gunja NJ,Athanasiou KA.Effects of hydrostatic pressure on leporine meniscus cell-seeded PLLA scaffolds[J].JBiomed Mater Res A,2010,92(3):896-905.
[19] Elder BD,Athanasiou KA.Hydrostatic pressure in articular cartilage tissue engineering:From chondrocytes to tissue regeneration [J].Tissue Eng Part B Rev,2009,15(1):43-53.
(本文編輯 湯亞玲)
Self-assembly tissue engineering fibrocartilage model of goat tem poromandibular joint disc
KANG Hong,LI Zhen-qiang,BI Yan-da.(Institute of Stomatology,Lanzhou University,Lanzhou730000,China)
ObjectiveTo construct self-assembly fibrocartilage model of goat temporomandibular joint disc and observe the biological characteristics of the self-assembled fibrocartilage constructs,further to provide a basis for tissue engineering of the temporomandibular joint disc and other fibrocartilage.MethodsCells from temporomandibular joint discs of goats were harvested and cultured.5.5×106cells were seeded in each agarose well with diameter 5mm ×depth 10mm,daily replace of medium,cultured for 2 weeks.Results One day after seeding,goat temporomandibular joint disc cells in agarose wells were gathered and began to self-assemble into a disc-shaped base,then gradually turned into a round shape.When cultured for 2 weeks,hematoxylin-eosin staining was conducted and observed that cells were round and wrapped around by the matrix.Positive Safranin-O/fast green staining for glycosaminoglycans was observed throughout the entire constructs,and picro-sirius red staining was examined and distribution of numerous typeⅠcollagen was found.Immunohistochemistry staining demonstrated brown yellow particles in cytoplasm and around extracellular matrix, which showed self-assembly construct can produce typeⅠcollagen as native temporomandibular joint disc tissue.ConclusionProduction of extracellular matrix in self-assembly construct as native temporomandibular joint disc tissue indicates that the use of agarose wells to construct engineered temporomandibular joint disc will be possible and practicable.
temporomandibular joint disc; tissue engineering; fibrocartilage
R 782.6
A
10.3969/j.issn.1000-1182.2011.03.024
1000-1182(2011)03-0314-04
2010-06-15;
2010-11-22
甘肅省國際科技合作基金資助項(xiàng)目(0804WCGA127)
康宏(1966—),男,甘肅人,教授,博士
康宏,Tel:0931-6112809