馬貴陽(yáng),杜明俊,李 丹
(遼寧石油化工大學(xué)石油天然氣工程學(xué)院,遼寧撫順 113001)
永凍區(qū)埋地管道周?chē)寥浪疅崃︸詈蠑?shù)值計(jì)算
馬貴陽(yáng),杜明俊,李 丹
(遼寧石油化工大學(xué)石油天然氣工程學(xué)院,遼寧撫順 113001)
基于中俄原油管道永凍區(qū)工程建設(shè)特點(diǎn),建立凍土多孔介質(zhì)水熱耦合數(shù)學(xué)模型。地表環(huán)境溫度采用周期性邊界條件,利用SIMPLER算法進(jìn)行數(shù)值求解,得到埋地?zé)嵊凸艿雷缘谝荒?月末投產(chǎn),不同月份土壤溫度場(chǎng)、水分場(chǎng)、冰水相變界面移動(dòng)規(guī)律隨環(huán)境溫度周期波動(dòng)的變化關(guān)系,并利用ANSYS軟件對(duì)土壤水熱耦合溫度場(chǎng)進(jìn)行凍脹應(yīng)力分析。結(jié)果表明:在地表溫度的周期波動(dòng)下,較長(zhǎng)時(shí)間內(nèi)管道周?chē)寥罍囟茸兓瘎×遥沂軠夭詈椭亓Φ挠绊?,土壤中水分產(chǎn)生了沿管道中心線(xiàn)自上而下的自然對(duì)流,隨地表以下不同土層溫度的不斷變化,自然對(duì)流渦旋中心形態(tài)及強(qiáng)度變化明顯,溫度梯度對(duì)水分遷移影響較大;隨著地表溫度的升高,管道上方土體的融沉速率略大于管道融沉速率;伴隨著融化圈的不斷擴(kuò)大,管道附近土體受較小應(yīng)力作用范圍大,容易發(fā)生不均勻凍脹。
永凍土;埋地管道;多孔介質(zhì);水熱力耦合;數(shù)值計(jì)算
埋地管道具有受地形地物限制因素少,安全密封,能長(zhǎng)期穩(wěn)定運(yùn)行等優(yōu)點(diǎn),在輸油管道工程中得到了廣泛的應(yīng)用[1]。隨著我國(guó)西氣東輸、中俄原油管道、中哈原油管道等重大工程的建設(shè),埋地管道必將更大規(guī)模地被設(shè)計(jì)施工并使用。對(duì)于穿越季節(jié)性?xún)鐾良岸嗄陜鐾羺^(qū)的埋地管道,最常見(jiàn)的安全問(wèn)題就是凍害破壞[2-3]。當(dāng)環(huán)境溫度降至冰點(diǎn)以下,形成冰晶或冰夾層,使土體體積膨脹,產(chǎn)生不均勻凍脹[4],加之周期不可逆的凍融循環(huán),致使管道周?chē)欢臻g內(nèi)土體發(fā)生凍脹融沉。凍脹和融沉對(duì)管壁產(chǎn)生額外的應(yīng)力,在適當(dāng)條件下會(huì)引起應(yīng)力集中和塑性變形[5],造成管道失穩(wěn)甚至破裂。梁承姬等[6]對(duì)埋地輸冷管道附近土體凍結(jié)過(guò)程進(jìn)行了水熱力耦合數(shù)值計(jì)算。以往對(duì)凍土水熱力耦合的研究多集中于凍土路基問(wèn)題,并以此提出了多個(gè)水熱力耦合數(shù)學(xué)模型[7-9]。但是,這些模型沒(méi)有完全解決水熱力耦合作用機(jī)制性問(wèn)題[10],如水分遷移的動(dòng)力包括重力勢(shì)、基質(zhì)勢(shì)、溫度勢(shì)等,忽略土體密度、溫度對(duì)基質(zhì)勢(shì)的影響不符合水熱耦合研究的思想[11]。溫度勢(shì)常采用克拉伯龍方程表述,但該方程不含土性指標(biāo),不考慮土體的組分、含水量、密度等基本參數(shù),因而不完善。對(duì)應(yīng)力和變形參數(shù)的確定,尚不能根據(jù)含水量和溫度的動(dòng)態(tài)變化準(zhǔn)確制定。筆者采用有限容積法建立土壤多孔介質(zhì)水熱耦合數(shù)學(xué)模型,并結(jié)合有限單元法分析水熱耦合作用后土壤溫度波動(dòng)所引起的應(yīng)力、應(yīng)變、位移變化。
土壤作為多孔介質(zhì),其內(nèi)部流體流動(dòng)及相變過(guò)程十分復(fù)雜,有限容積法是處理多孔介質(zhì)流動(dòng)相變問(wèn)題常用的理論方法[12-16]。假設(shè)土體各項(xiàng)均質(zhì)連續(xù),相變過(guò)程流體密度變化符合Boussinesq假設(shè),對(duì)大量黏土、亞黏土的滲流試驗(yàn)表明,低速滲流時(shí),水分遷移符合達(dá)西定律,且水力梯度較小時(shí),滲流為層流,只有少數(shù)黏土,當(dāng)水力梯度較大時(shí),滲流變?yōu)椴灰?guī)則相互混雜的紊流,且這種土只有達(dá)到起始水力梯度后才能滲流。本文中采用達(dá)西定律計(jì)算水分遷移過(guò)程并在動(dòng)量方程中引入慣性損失對(duì)水力梯度進(jìn)行修正,使其滿(mǎn)足計(jì)算要求。忽略由相變?nèi)诨鸬乃俣茸兓8鶕?jù)有限容積理論,建立的質(zhì)量守恒、動(dòng)量守恒、能量守恒方程如下:
質(zhì)量守恒方程為
式中,U為流體速度,m/s;ρf為流體密度kg/m3;t為時(shí)間,s。
動(dòng)量守恒方程為
式中,u,v分別為U在x,y方向上的速度分量,m/s;k為多孔介質(zhì)滲透率,m2;C2為慣性損失系數(shù),m-1;ε為孔隙率;p為孔隙壓力,Pa;Dp為粒子平均直徑,mm;μ為流體動(dòng)力黏度,Pa·s;α為流體膨脹系數(shù),1/K,Amulsh為固液糊狀區(qū)常數(shù),用來(lái)反映凍結(jié)前鋒的形態(tài);β為液相分?jǐn)?shù)。
能量守恒方程為
式中,γ為液體所占孔隙分?jǐn)?shù);hf、hs和hp分別為液相介質(zhì)、相變后固相介質(zhì)和多孔介質(zhì)骨架的焓,J/kg;keff為有效導(dǎo)熱率,W/(m·K);kf和ks分別為液相和固相熱導(dǎo)率,W/(m·K);kp為多孔介質(zhì)骨架熱導(dǎo)率,W/(m·K);ρs為固相介質(zhì)密度,kg/m3。
管道周?chē)柡秃畠鐾潦怯啥嗫捉橘|(zhì)土骨架,冰晶體和未凍水共同組成的復(fù)合土體。當(dāng)凍土溫度發(fā)生變化時(shí),它將隨著溫度的改變而產(chǎn)生凍脹或融沉。忽略由結(jié)構(gòu)變化引起的溫度改變,首先計(jì)算出土壤水熱耦合溫度載荷列陣,并將其作為凍脹應(yīng)力分析的初始條件。有限容積法與有限單元法所采用的網(wǎng)格單元類(lèi)型不同,因此導(dǎo)入ANSYS計(jì)算時(shí)需采取相應(yīng)的措施,進(jìn)行單元轉(zhuǎn)換和節(jié)點(diǎn)插補(bǔ)。
計(jì)算凍脹應(yīng)力必須在物理方程中考慮變溫效應(yīng)[17],即
式中,[Q]為單元體力與面力的等效節(jié)點(diǎn)荷載列陣;[k]為單元?jiǎng)偠染仃?[F]ε0為溫度改變而增加的節(jié)點(diǎn)荷載,稱(chēng)為單元變溫等效節(jié)點(diǎn)力向量。
將初應(yīng)變[ε0]的表達(dá)式代入[F]ε0,得
式中,v為風(fēng)速;Tk為一年內(nèi)地表環(huán)境溫度周期變化;αh為原油與管道內(nèi)壁的當(dāng)量換熱系數(shù),117W/(m2·k)。
中俄原油管道漠河—大慶段全長(zhǎng)960 km,沿線(xiàn)約有500 km的多年凍土區(qū),地形起伏多為水系,沼澤發(fā)育。其中約有50 km的沼澤濕地,由于地表以下為土冰層或地下冰,因此成為管道沿線(xiàn)最差的凍土工程地段[18]。將該區(qū)視為飽和含水凍土,根據(jù)工程設(shè)計(jì)參數(shù),模擬管徑813 mm,壁厚15 mm,距管中心埋深2.4 m。土壤密度1680 kg/m3,假設(shè)土體為彈性體,凍土彈性模量30 MPa,未凍土彈性模量16 MPa,泊松比0.3,熱膨脹系數(shù)1.0 ×10-5,輸油溫度15℃,初始地溫-2℃,地表平均風(fēng)速2 m/s,采用多層柱狀導(dǎo)熱理論對(duì)管道與保溫層的物性參數(shù)進(jìn)行規(guī)一化處理,模擬區(qū)域15 m×10 m。凍土、未凍土、水、冰、保溫層和管道的比熱分別為1764、2403、4200、2100、700和500 J/(kg·K)-1;導(dǎo)熱系數(shù)分別為1.472、1.211、0.567、2.24、0.035、48 W/(m·K)-1。由于管內(nèi)原油及管外土壤沿管軸方向傳熱較?。?9],故忽略管道軸向溫降,建立二維非穩(wěn)態(tài)傳熱模型。由于計(jì)算區(qū)域?yàn)閷?duì)稱(chēng)分布,故簡(jiǎn)化的計(jì)算模型見(jiàn)圖1。
圖2為一個(gè)周期內(nèi)地表平均溫度隨環(huán)境溫度波動(dòng)的變化關(guān)系。圖3、4中給出了無(wú)保溫層和采用30 mm保溫層情況下,埋地?zé)嵊凸艿雷?月末開(kāi)始投產(chǎn),運(yùn)行330、510和690 d后的管道周?chē)鷥鐾寥诨嘧兘缑嬉苿?dòng)云圖(局部放大圖,灰色為融土,黑色為凍土)。分析可知,無(wú)保溫層情況下,凍土融化范圍較大,說(shuō)明管道外壁采用保溫材料可以減小凍土融化范圍,防止凍土退化。同時(shí),隨著熱油管道運(yùn)行時(shí)間的延長(zhǎng),兩種情況下管底凍土融化速率均降低,這是由于熱油不斷向管外傳熱,使管道周?chē)寥罍囟壬?,降低了管?nèi)外溫度梯度,使散發(fā)到土壤中的熱量減少,從而降低了凍土融化速率。
圖5、6中給出了無(wú)保溫層和采用30 mm保溫層情況下,管道運(yùn)行510和690 d后土壤溫度場(chǎng)等值線(xiàn)(局部放大圖)。分析可知,隨著地表溫度的周期性波動(dòng),土壤溫度場(chǎng)波動(dòng)劇烈,原因在于初始地溫低,地表環(huán)境溫度波動(dòng)大,受環(huán)境變化影響的地層深度在5~10 m[20],加之熱油管道不斷向周?chē)寥郎?,且在重力和溫度梯度的作用下,土壤中水分開(kāi)始向凍結(jié)前鋒遷移,并攜帶熱量,同時(shí)冰水相變釋放潛熱,因此在達(dá)到穩(wěn)態(tài)之前管道周?chē)寥罍囟葓?chǎng)仍會(huì)產(chǎn)生較大范圍的波動(dòng)。
圖7、8中給出了兩種條件下管道運(yùn)行510和690 d后管道周?chē)寥浪謭?chǎng)流線(xiàn)圖(局部放大圖)。結(jié)合圖5、6可知,在溫度梯度及重力的作用下,土壤中的水分產(chǎn)生了沿管道中心線(xiàn)自上而下的自然對(duì)流,且隨地表溫度的周期波動(dòng),自然對(duì)流渦旋中心形態(tài)及強(qiáng)度差異較大。分析可知,流場(chǎng)渦旋形態(tài)主要受溫度梯度影響,均呈梨形分布。從圖7可以看出,當(dāng)?shù)乇砀浇馏w溫度高于管道周?chē)寥罍囟葧r(shí),渦旋中心為倒置的梨形,當(dāng)?shù)乇頊囟容^低且管道外圍土壤溫度低于管道附近土壤溫度時(shí),渦旋中心呈臥倒的梨形(圖8),且溫度梯度越大形態(tài)變化越明顯。
圖5 510 d后土壤溫度場(chǎng)等值線(xiàn)Fig.5 Soil temperature field contour after 510 days
圖6 690 d后土壤溫度場(chǎng)等值線(xiàn)Fig.6 Soil temperature field contour after 690 days
圖9中給出了不同監(jiān)測(cè)點(diǎn)垂直位移隨管道運(yùn)行時(shí)間的變化關(guān)系。由于計(jì)算模型不受外部載荷的作用,因此在計(jì)算三場(chǎng)耦合作用中所產(chǎn)生的應(yīng)力、應(yīng)變、位移全部由凍脹融沉產(chǎn)生,且假設(shè)管道無(wú)形變,只發(fā)生位置遷移。由于初始地溫低,且初始環(huán)境溫度低于冰點(diǎn),忽略了管道預(yù)熱過(guò)程,因此運(yùn)行30 d后管道和地表均出現(xiàn)不同幅度的凍漲。由圖9可知,隨著地表溫度的升高,管道及管道上方土體均表現(xiàn)出不同程度的融沉現(xiàn)象,且管道上方土體的融沉速率略大于管道融沉速率,這主要是由于地表附近土體溫升快,凍土迅速融化,而管道底部土體溫升慢,加之土壤熱阻較大,溫度的傳遞具有明顯的滯后性,從而降低了管道融沉速率。無(wú)保溫層時(shí)管道融沉位移較大,與采用30 mm保溫層相比,最大融沉值出現(xiàn)在不同時(shí)段,這是由于無(wú)保溫層時(shí)熱油向土壤中傳熱多,管道周?chē)鷥鐾寥诨秶?,受地表溫度影響相?duì)較小,加之土壤傳熱的滯后性,從而使管道融沉最大值出現(xiàn)的時(shí)間比地表溫度最大值出現(xiàn)時(shí)間滯后較多。兩種情況下,管道上方土體的凍脹融沉變化曲線(xiàn)接近。
圖10、11中給出了兩種情況下,管道運(yùn)行690 d后土壤不同方向凍脹應(yīng)力云圖。由計(jì)算的數(shù)據(jù)可知,無(wú)保溫層時(shí)管道周?chē)馏wx方向的應(yīng)力為11.603 kPa,而y方向的應(yīng)力為41.823 kPa,大約是x方向應(yīng)力的3.5倍。采用30 mm保溫層時(shí),管道附件土體x方向的應(yīng)力為11.009 kPa,而y方向的應(yīng)力為53.479 kPa,大約是x方向應(yīng)力的5倍。這說(shuō)明垂直應(yīng)變遠(yuǎn)大于水平應(yīng)變,且無(wú)保溫層時(shí),管道下方土體受較小應(yīng)力作用范圍大,很容易發(fā)生融沉現(xiàn)象。
(1)在地表溫度的周期波動(dòng)下,較長(zhǎng)時(shí)間內(nèi)管道周?chē)寥罍囟茸兓瘎×遥沂軠夭詈椭亓Φ挠绊?,土壤中水分產(chǎn)生了沿管道中心線(xiàn)自上而下的自然對(duì)流,溫度梯度對(duì)水分遷移影響較大。
(2)隨著地表溫度的升高,管道上方土體融沉速率略大于管道融沉速率,且隨著融化圈的增大,無(wú)保溫層時(shí),管道融沉位移差大于采用30 mm保溫層時(shí)的情況。
(3)無(wú)保溫層時(shí)管道附近土體受較小應(yīng)力作用范圍大,很容易產(chǎn)生不均勻凍脹。建議對(duì)含水量較大的永凍區(qū)管道工程采用換填或圍砌的方式進(jìn)行施工,最大限度地降低凍土融化速率,防止管道凍害。
[1]馬貴陽(yáng),劉曉國(guó),鄭平.埋地管道周?chē)寥浪疅狁詈蠝囟葓?chǎng)的數(shù)值模擬[J].遼寧石油化工大學(xué)學(xué)報(bào),2007,27(1):41-43.
MA Gui-yang,LIU Xiao-guo,ZHENG Ping.Numerical simulation for soil hydrothermal coupling temperature field around underground pipelines[J].Journal of Liaoning U-niversity of Petroleum & Chemical Technology,2007,27(1):41-43.
[2]何樹(shù)生,喻文兵,陳文國(guó),等.東北多年凍土區(qū)埋地輸油管道周?chē)鷾囟葓?chǎng)特征非線(xiàn)性分析[J].冰川凍土,2008,30(2):287-295.
HE Shu-sheng,YU Wen-bing,CHEN Wen-guo,et al.Non-linear analysis of temperature fields around the buried oil-pipeline in permafrost regions,Northeast China[J].Journal of Glaciology and Geocryology,2008,30(2):287-295.
[3]鄭平,馬貴陽(yáng).凍土區(qū)埋地輸油管道溫度場(chǎng)數(shù)值模擬的研究[J].油氣儲(chǔ)運(yùn),2006,25(8):25-28.
ZHENG Ping,MA Gui-yang.The progress and review on numerical simulation for soil temperature field around oil pipelines buried in frozen ground area[J].Oil& Gas Storage and Transportation,2006,25(8):25-28.
[4]胡延成,馬貴陽(yáng),楊濤.埋地管道相應(yīng)啟動(dòng)過(guò)程的數(shù)值模擬計(jì)算[J].油氣儲(chǔ)運(yùn),2009,28(6):26-29.
HU Yan-cheng,MA Gui-yang,YANG Tao.Numerical simulation calculation for relevant startup process of buried pipelines[J].Oil& Gas Storage and Transportation,2009,28(6):26-29.
[5]呂宏慶,李均峰,蘇 毅.多年凍土區(qū)管道的失效形式及監(jiān)測(cè)技術(shù)[J].天然氣工業(yè),2008,28(9):98-100.
Lü Hong-qing,LI Jun-feng,SU Yi.Failure modes and monitoring techniques of pipelines in permafrost zone[J].Natural Gas Industry,2008:28(9):98-100.
[6]梁承姬,李洪升.輸冷管道附近土體凍結(jié)過(guò)程的水熱力耦合數(shù)值模擬[J].上海海運(yùn)學(xué)院學(xué)報(bào),2001,21(4):85-91.
LIANG Cheng-ji,LI Hong-sheng.Numerical analysis for coupled of moisture heat and stress fields during soil freezing around the buried chilled pipeline[J].Journal of Shanghai Maritime University,2001,21(4):85-91.
[7]LIU Jian-kun.Coupled problem of unsteady seepage of water and thermal transfer in roadbed on permafrost regions[C]//Proceedings of International Symposium on Cold Regions Engineering,Harbin,China.Harbin:U-niversity of Harbin Industry Technology Press,1996:107-110.
[8]HESHUKOV A E,EGOROV A G.Numerical modeling of coupled moisture,solute and heat transport in frozen soils[C]//LEWKOWIEZ A G,ALLARD M.The 7th International Permafrost Conference.Canada:Loyal University,1998:987-992.
[9] GOERING D J,INSTANES A,KUNDSEN S.Convective heat transfer in railway embankment ballast[C]//THIMUS J F.Ground Freezing 2000.Rotterdam:Balkema,2000:3l-36.
[10]王鐵行,胡長(zhǎng)順.多年凍土地區(qū)路基溫度場(chǎng)和水分遷移場(chǎng)耦合問(wèn)題研究[J].土木工程學(xué)報(bào),2003,36(12):93-95.
WANG Tie-h(huán)ang,HU Chang-shun.Study on the problem of coupled temperature field and moisture migration field of subgrade in permafrost pegion[J].China Civil Engineering Journal,2003,36(12):93-95.
[11]王鐵行,李寧,謝定義.土體水熱力耦合問(wèn)題研究的意義現(xiàn)狀及建議[J].巖石力學(xué),2005,26(3):488-492.
WANG Tie-h(huán)ang,LI Ning,XIE Ding-yi.Necessity and means in research on soil coupled heat-moisture-stress issues[J].Rock and Soil Mechanics,2005,26(3):488-492.
[12]盧濤,姜培學(xué).多孔介質(zhì)融化相變自然對(duì)流數(shù)值模擬[J].工程熱物理學(xué)報(bào),2005,26(增刊):167-176.
LU Tao,JIANG Pei-xue.Numerical simulation of natural convection for melting phase change in porous media[J].Journal of Engineering Thermophysics,2005,26(sup):167-176.
[13]BECKERMANN C,VISKANTA R.Natural convection solid/liquid phase change in porous media[J].Heat Mass Transfer,1988,31(1):35-46.
[14]WANG B X,DU J H.Forced convective heat transfer in a vertical annulus filled with porous media[J].Heat Mass Transfer,1993,36:4207-4213.
[15] NASSER Hamdami,MONTEAU Jean Yves,ALAIN Le Bail.Simulation of coupled heat and mass transfer during freezing of a porous humid matrix[J].International Journal of Refrigeration,2004,27:595-603.
[16]盧濤,佟德斌.飽和含水土壤埋地原油管道冬季停輸溫降[J].北京化工大學(xué)學(xué)報(bào),2006,33(4):37-40.
LU Tao,TONG De-bin.Temperature decrease of crude oil pipeline buried in soil saturated with water during shut down in winter[J].Journal of Beijing University of Chemical Technology,2006,33(4):37-40.
[17]李寶花,楊更社,王蓮花,等.凍土墻凍結(jié)溫度場(chǎng)和應(yīng)力場(chǎng)耦合的有限元分析[J].西安科技大學(xué)學(xué)報(bào),2003,23(6):143-146.
LI Bao-h(huán)ua,YANG Geng-she,WANG Lian-h(huán)ua,et al.Finite element analysis for the coupled problem of temperature and stress fields in excavation of deep foundation pit conserved by frozen soil wall[J].Journal of Xi'an University of Science and Technology,2003,23(6):143-146.
[18]李玉國(guó),金會(huì)軍,張建明,等.中國(guó)—俄羅斯原油管道工程(漠河—大慶段)凍土工程地質(zhì)考察與研究進(jìn)展[J].冰川凍土,2008,30(1):170-175.
LI Yu-guo,JIN Hui-jun,ZHANG Jian-ming,et al.Recent advances in frozen ground engineering geology survey along the China-Russia crude oil pipeline route(Mo'he-Daqing section)[J].Journal of Glaciology and Geocryology,2008,30(1):170-175.
[19]許康,張勁軍.采用焓法方程計(jì)算埋地管道含蠟原油停輸溫降[J].石油大學(xué)學(xué)報(bào):自然科學(xué)版,2005,29(1):84-88.
XU Kang,ZHANG Jin-jun.Temperature drop calculation of waxy crude in a buried pipeline after shutdown using enthalpy formulation[J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(1):84-88.
[20]朱志武,寧建國(guó),馬巍.土體凍融過(guò)程中水、熱、力三場(chǎng)耦合本構(gòu)問(wèn)題數(shù)值模擬[J].工程力學(xué),2007,24(5):138-144.
ZHU Zhi-wu,NING Jian-guo,MA Wei.Constitutive model and numerical analysis for the coupled problem of water,temperature and stress fields in the process of soil freeze thaw[J].Engineering Mechanics,2007,24(5):138-144.
Numerical calculation for temperature coupled with moisture and stress of soil around buried pipeline in permafrost regions
MA Gui-yang,DU Ming-jun,LI Dan
(College of Petroleum and Natural Gas Engineering,Liaoning Shihua University,F(xiàn)ushun 113001,China)
Based on the construction characteristics of Sino-Russian crude oil pipeline permafrost regions project,a mathematical model of porous medium coupling of moisture-h(huán)eat of the frozen soil was established.The periodic boundary conditions were adopted for obtaining the ambient temperature and SIMPLER method was used for numerical simulation.The relationship between the cyclic swing of the ambient temperature and the rule of soil temperature,moisture field and ice phase change interface movement was obtained since the late April of the first year when the pipeline was put into operation.The frost heave stress with the field of temperature coupled with moisture was analyzed by the software ANSYS.The results show that the soil temperature around the pipeline changes dramatically in a long period due to the periodic fluctuations of earth's surface temperature.Top-down free convection of the moisture contained in the soil is generated along the center line of the pipeline by the effect of temperature difference and gravity.The modality and intensity in the vortex center of the free convection change significantly with the underground soil temperature changing,and water translocation can be easily impacted by the temperature gradient.At the same time,as the rise of the surface temperature,the thawing rate of soil above pipe is slightly larger than that of the pipe.As the melting cycle expands,the soil around pipe impacted by the small stress range is prone to form heterogeneous frost heaving.
permafrost;buried pipelines;porous medium;temperature coupled with moisture and stress;numerical calculation
TE 973
A
10.3969/j.issn.1673-5005.2011.03.022
1673-5005(2011)03-0108-07
2010-08-28
遼寧省自然科學(xué)基金項(xiàng)目(20082186);遼寧省高校重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(LS2010097)
馬貴陽(yáng)(1965-),男(漢族),內(nèi)蒙古寧城人,教授,博士,主要從事計(jì)算流體力學(xué)及多孔介質(zhì)傳熱、傳質(zhì)方面的研究。
(編輯 沈玉英)