趙 堅(jiān),高 夯
(1.中央廣播電視大學(xué)數(shù)學(xué)系,北京 100031; 2.東北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,吉林長(zhǎng)春 130024)
關(guān)于極值點(diǎn)的必要條件
趙 堅(jiān)1,高 夯2
(1.中央廣播電視大學(xué)數(shù)學(xué)系,北京 100031; 2.東北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,吉林長(zhǎng)春 130024)
介紹了函數(shù)極值問(wèn)題、泛函極值問(wèn)題和最優(yōu)控制問(wèn)題,給出極值點(diǎn)與最優(yōu)控制的必要條件,闡述了最優(yōu)控制問(wèn)題的新進(jìn)展及它們之間的聯(lián)系.
極值點(diǎn);最優(yōu)控制;必要條件
泛函極值問(wèn)題如同函數(shù)極值問(wèn)題一樣,具有大量的實(shí)際問(wèn)題作為背景,如捷線問(wèn)題、最小曲面問(wèn)題、等周問(wèn)題等.設(shè)集合
可以證明,集合Y(Y?C2[a,b])是一開(kāi)集.設(shè)f是關(guān)于其各變量連續(xù)可導(dǎo)的函數(shù),在Y上定義如下的泛函:
其中,U?R是緊集.
假設(shè)f滿(mǎn)足如下的條件:
(C1)f關(guān)于變量t可測(cè),關(guān)于變量y連續(xù)可微,關(guān)于變量u連續(xù).
注8在(3.1)式中,若A是有界算子,則方程(3.1)是常微分方程,且X=Rn.若A是無(wú)界算子,則方程(3.1)可以是偏微方程.例如A=Δ(拉普拉斯算子).則可選擇X=W2,p0(Ω).對(duì)于任意的u∈U ad,在條件(C1)下,方程(3.1)存在唯一解.因此,可以在U ad上定義如下的泛函:
以及Uad=L2(Ω)等情形下,利用變量置換與懲罰泛函等手段,得到了相應(yīng)的最優(yōu)性條件.
在文獻(xiàn)[12-13]中,作者在問(wèn)題(3.9)中U是有限點(diǎn)集的情形,通過(guò)構(gòu)造拋物控制系統(tǒng),得到拋物系統(tǒng)最優(yōu)控制的必要條件,證明了擾動(dòng)的拋物系統(tǒng)的最優(yōu)對(duì)收斂到原橢圓系統(tǒng)的最優(yōu)對(duì),從而得到橢圓系統(tǒng)最優(yōu)對(duì)的必要條件.
在文獻(xiàn)[14]中,作者為了克服U ad不凸的困難,采用了松弛方法[15].將松弛方法用到多解控制系統(tǒng)是作者的一個(gè)重要?jiǎng)?chuàng)新之處.同時(shí),我們也看到了松弛控制方法也很難使用到很一般的情形.
[1] 張恭慶,林源渠.泛函分析講義[M].北京:北京大學(xué)出版社,1987:67-68.
[2] L IX,YONG J.Op timal control theory fo r infinite dimensional system s[M].Boston:Birkhauser,1995:243-246.
[3] YONGJ.Pontryagin maximum p rinciple for semilinear second order elliptic partial differential equations and variational inequalitieswith state constraints[J].Differential Integral Equations,1992,5:1307-1334.
[4] L IONSJ L.Some methods in the mathematical analysis of system and their control[M].Beijing:Science Press,1981:176.
[5] BONNANSJ F,CASAS E.Op timal control of semilinearmultistate system sw ith state constraints[J].SIAM J Control Op tim, 1989,27(2):116-455.
[6] CASAS E,KAV IAN O,PUEL J P.Op timal control of an ill-posed ellip tic semilinear equation w ith an exponential non linearity [J].ESA IM:COCV,1998,3:361-380.
[7] ABERGEL F,CASAS E.Some op timal control p roblem s of multistate equations qppearing in fluid mechanichs[J].RA IRO Model Math Anal Numer,1993,27(2):223-247.
[8] WANG G S.Op timal control p roblem s governed by non-well-posed semilinear ellip tic equation[J].Nonlinear Anal,2000,42 (5):789-801.
[9] WANG G S.Op timal control p roblems governed by non-well-posed semilinear ellip tic equation[J].Nonlinear Anal,2002,49: 315-333.
[10] DENG YB,WANG GS.Op timal controlof some semilinear ellip tic equationsw ith critical exponent[J].Nonlinear Anal,1999, 36:915-922.
[11] WANG G S,WANG L J.Maximum p rincip le fo r op timal control of non-w ell-posed ellip tic differential equations[J].Nonlinear Anal,2003,52:41-67.
[12] GAO H.Op timality condition fo r a class of semilinear ellip tic equations[J].Acta Math Sinica,2001,44(2):319-332.
[13] GAO H,PAVEL N H.Op timal com trol p roblem s fo r a class of semilinear multisolution ellip tic equation[J].J Op tim Theory App l,2003,1:353-380.
[14] 欒姝.多解橢圓型方程的最優(yōu)控制問(wèn)題[D].長(zhǎng)春:東北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,2009.
[15] WARGE J.Op timal control of differential and functional equations[M].New York:Academic Press,1972:247-278.
On the necessary conditions of m in imal element
ZHAO Jian1,GAO Hang2
(1.Department of Mathematics,China Central Radio and TV University,Beijing 100031,China; 2.School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China)
In this paper,discuss the p roblem s of function minimal element,functional m inimal element and p roblem of op timal control.Give the necessary conditions of m inimal elements and op timal control.On one hand,the new p rogress is introduced on op timal control research,on the other hand, give the relation of minimal elements and op timal control.
m inimal element;op timal control;necessary condition
O 231.2
120·30
A
1000-1832(2010)04-0001-05
2010-09-15
國(guó)家自然科學(xué)基金資助項(xiàng)目(10871039).
趙堅(jiān)(1958—),女,碩士,副教授,主要從事應(yīng)用數(shù)學(xué)研究;通訊作者:高夯(1956—),男,博士,教授,博士研究生導(dǎo)師,主要從事控制理論研究.
(責(zé)任編輯:陶 理)