王媛媛,胡接力,崔靜,黃愛龍,阮雄中,2,陳壓西
1 重慶醫(yī)科大學附屬第二醫(yī)院 教育部感染性疾病分子生物學重點實驗室 脂質研究中心,重慶 400016 2 Center for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus,London, UK
SM22啟動SCAP真核表達質粒的構建及其在CHO細胞中的表達
王媛媛1,胡接力1,崔靜1,黃愛龍1,阮雄中1,2,陳壓西1
1 重慶醫(yī)科大學附屬第二醫(yī)院 教育部感染性疾病分子生物學重點實驗室 脂質研究中心,重慶 400016 2 Center for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus,London, UK
為建立平滑肌特異的固醇調節(jié)元件結合蛋白(SREBP)的裂解激活蛋白(SCAP)超表達的轉基因小鼠,深入探討SCAP的功能,本實驗構建了由平滑肌特異蛋白SM22啟動子(pSM22)啟動倉鼠SCAP 443位點突變體——SCAP(D443N)的真核表達質粒,并在倉鼠卵巢細胞(CHO)驗證其表達。利用巢式PCR從小鼠肝臟組織提取的基因組中擴增得到 pSM22基因。先將其插入 pMD-T載體,構建 T-SM22,對 pSM22測序后,通過雙酶切將 pSM22克隆到pGL3-control-Luc中,成為pGL3-SM22-Luc。轉染pGL3-SM22-Luc到血管平滑肌(VSMCs)中,通過檢測熒光素酶(Luc)值觀察pSM22在VSMCs內的啟動活性。利用PCR從pTK-HSV-SCAP(D443N)質粒中擴增出SCAP(D443N)后克隆入 pGL3-control中,成為 pGL3-SCAP。然后再將 pSM22克隆入 pGL3-SCAP中,成為表達質粒 pGL3-SM22-SCAP(D443N)。轉染表達質粒到CHO細胞,用real-time PCR和Western blotting驗證SCAP(D443N)的表達。結果證實pSM22在體外VSMCs中能啟動Luc的表達; 表達質粒pGL3-SM22-SCAP(D443N)酶切及測序結果正確; 將其轉染到CHO細胞后,與轉染pGL3-control的對照細胞相比SCAP(D443)mRNA和蛋白表達顯著增強。
SM22,啟動子,SREBP裂解激活蛋白,質粒構建,基因表達,轉染
Abstract:The experiment was designed to investigate the function of SREBP cleavage-activating protein(SCAP)mutant(D443N)by constructing an eukaryotic expressive vector using a smooth muscle specific promoter SM22(pGL3-SM22-SCAP(D443N)).SM22 promoter(pSM22)was amplified from genome DNA of mice by nested PCR, and then cloned into pMD-T vector.The SM22 promoter fragment released from the vector by Kpn I and Hind III digestion was sub-cloned into pGL3-control-Luc vector, to form pGL3-SM22-Luc.The activity of pSM22 in human vascular smooth muscle cells(VSMCs)was tested using Dual-LuciferaseReporter System.SCAP(D443)mutant amplified from plasmid pTK-HSV-SCAP(D443N)and pSM22 from mice liver were cloned into pGL3-control vector to construct pGL3-SM22-SCAP(D443N)which was transfected into Chinese hamster ovary cells(CHO)to test SCAP(D443)expression by real-time PCR and Western blot.The sequence and construction of pGL3-SM22-SCAP(D443N)were correct.SM22 promoter activity initiated the expression of luciferase in VSMCs and also drove SCAP(D443)expression in transfected CHO cells.The pGL3-SM22-SCAP(D443N)eukaryotic expression vector was successfully constructed and the recombinant vector provides a powerful approach in investigating the function and regulation of SCAP and also in producing vascular smooth muscle specific SCAP transgenic mice.
Keywords:SM22, promoter, SREBP cleavage-activating protein, plasmid construction, gene expression, transfection
固醇調節(jié)元件結合蛋白裂解激活蛋白(SCAP)是存在于內質網的細胞內膽固醇敏感器,也是固醇調節(jié)元件結合蛋白(SREBP)的錨定蛋白,在調節(jié)細胞內膽固醇水平中起著非常關鍵的作用[1]。當細胞內膽固醇缺乏時,它可以將SREBP從內質網運送至高爾基體發(fā)生裂解,裂解的活性片段進入細胞核,引起在啟動子區(qū)域含有膽固醇調節(jié)元件(SRE)的下游靶基因轉錄激活,從而導致細胞對膽固醇的合成和攝取增加。相反,在細胞內膽固醇過負荷時,SCAP與內質網上的固定蛋白胰島素誘導基因(Insig-1,2)結合,將 SREBP錨定在內質網而不向高爾基體轉運,從而停止對下游靶基因(如 LDL受體和HMG CoA還原酶)的轉錄激活。本研究室大量的前期研究表明,當肝細胞內過度表達SCAP,可以導致肝細胞內脂質攝取與合成增加及脂肪肝發(fā)生[2];當血管平滑肌細胞 SCAP過度表達時,亦會導致膽固醇異常積聚,形成泡沫細胞[3]。雖然野生型SCAP過表達時會引起膽固醇對LDL受體負反饋調節(jié)失調,但當 SCAP基因位于膽固醇敏感區(qū)的第443個密碼子存在點突變時,SCAP將不再受細胞內膽固醇水平的反饋調節(jié),這樣會徹底打破細胞內膽固醇對靶基因的負反饋調節(jié)[4]。同時,平滑肌特異蛋白 SM22啟動子在體外能夠廣泛表達,而在體內卻具有在動脈平滑肌上的表達特異性[5]。因此,本實驗選定SCAP(D443N)突變體與SM22啟動子(pSM22),首次構建了 pGL3-SM22-SCAP(D443N)真核表達質粒,為今后建立血管平滑肌特異的SCAP超表達轉基因小鼠、深入探討 SCAP的功能及動脈粥樣硬化發(fā)生的新機制奠定了基礎。
中國倉鼠卵巢細胞(CHO)(重慶醫(yī)科大學教育部感染性疾病分子生物學重點實驗室);血管平滑肌細胞株(VSMCs)(英國Buckinghamshire,TCS cell works);DMEM-F12培養(yǎng)基、優(yōu)等胎牛血清(賽默飛世爾化學制品有限公司);載體 pMD18-T、DNA聚合酶、T4 DNA連接酶及限制性內切酶 BglⅡ、XbaⅠ、BamHⅠ、KpnⅠ、Hind Ⅲ、SalⅠ(大連寶生物工程有限公司);蛋白提取試劑盒(凱基生物科技發(fā)展有限公司);BCA蛋白定量試劑盒(北京鼎國生物技術有限公司);轉染試劑LipofectamineTM-2000(美國Invitrogen公司);質粒提取試劑盒,質粒載體pGL3-control、pGL3-enhancer、pEGFP-N1,雙熒光素酶報告基因檢測系統(美國Promega公司);質粒pTK-HSV-SCAP-T7(D443N)及兔源抗SCAP多克隆抗體(英國UCL大學皇家自由醫(yī)學院腎臟病研究中心惠贈);DNA提取試劑盒(德國QIAGEN公司);兔源抗 β-actin多克隆抗體、羊抗兔 HRP標記二抗(美國santa cluz公司);引物合成(上海生工生物工程有限公司)。
CHO細胞株在含10%優(yōu)等胎牛血清、100 U/mL青霉素、100 mg/mL鏈霉素的DMEM-F12培養(yǎng)基中,VSMCs細胞在20%優(yōu)等胎牛血清、100 U/mL青霉素、100 mg/mL鏈霉素的DMEM-F12培養(yǎng)基中,均于 20% O2、5% CO2、75% N2的常氧孵箱中 37℃培養(yǎng)。
參考 Moessler等[5]的研究結果,設計兩對引物F1、R1和F2、R2(表1)做巢式PCR擴增pSM22。先用外引物F1、R1對小鼠肝臟的基因組DNA進行擴增,再利用內引物F2、R2對上述PCR產物重新擴增獲得全長為 2188 bp的 pSM22序列。然后將pSM22的 PCR產物插入 pMD18-T載體,成為T-SM22。由于 pSM22可以正反兩種方向插入pMD18-T,對 T-SM22進行酶切鑒定,挑選出酶切位點KpnⅠ位于pSM22上游、Hind Ⅲ位于其下游的質粒進行酶切,然后將切出的 pSM22片段克隆入pGL3-control-Luc中,成為pGL3- SM22-Luc。
表1 PCR擴增引物序列設計Table 1 Primers used in the study
pGL3-SCAP質粒的構建(圖1):根據GenBank(Accession No.U67060)中的 SCAP序列信息設計一對引物 F3、R3(表 1),從質粒 pTK-HSV-SCAPT7(D443N)中擴增出SCAP片段,使SCAP上游含有BglⅡ酶切位點和ATG翻譯起始密碼子,下游含有XbaⅠ酶切位點。用BglⅡ和XbaⅠ酶切pGL3-control質粒和SCAP的PCR產物,將線性帶有粘性末端的全長SCAP cDNA和pGL3載體大片段置于 16℃過夜連接,轉化入大腸桿菌 DH5α,小量提取獲得的質粒pGL3-SCAP。
pGL3-SM22-SCAP(443N)質粒構建(圖1):用BamHⅠ和 SalⅠ酶切 T-SM22,使 pSM22上游含有BamHⅠ的酶切位點,下游含有 SalⅠ的酶切位點,然后將 pSM22克隆入 pEGFP-N1,再用 BamHⅠ和BglⅡ將其酶切克隆到用 BamHⅠ處理的pGL3-SCAP質粒中(BamHⅠ和BglⅡ為同尾酶)。由于pSM22能以正反兩種方向與pGL3-SCAP進行連接,利用酶切篩選出pSM22和SCAP方向一致的正確克隆后,獲得pGL3-SM22-SCAP(D443N)。
DNA測序由本實驗室完成,采用 ABI PRISM 3100 genetic Analyzer全自動測序儀,雙脫氧鏈末端終止法,對T-SM22和pGL3-SM22-SCAP(D443N)中的pSM22及SCAP序列進行測序。同一片段經正反兩個方向分別進行測序反應。
VSMCs轉染:按照轉染試劑說明于轉染前1天接種細胞入24孔板,24 h后至細胞長至90%匯合時,每孔分別定量加入 pGL3-SM22-Luc或 pGL3-control-Luc(陽性對照)或 pGL3-enhancer(陰性對照)0.8 μg和pRL-TK內參照質粒0.1 μg,按照DNA(μg):脂質體(μL)為 1:4 的比例轉染 VSMCs,4 h 后換液,繼續(xù)培養(yǎng)24 h。
報告基因活性檢測:轉染24 h后按照雙熒光素酶(Luc)報告基因檢測系統試劑說明裂解細胞,檢測Luc活性。分別計算Firefly Luc/Rellina Luc的比值,以pGL3-control-Luc和pGL3-enhance轉染細胞作為對照,比較判斷pSM22的啟動活性。
CHO細胞的轉染:按照轉染試劑說明,轉染前一天接種合適密度的細胞至10 cm細胞培養(yǎng)皿,24 h后待細胞長至 90%匯合時,按照 DNA(μg):脂質體(μL)為 1:1.3的比例分別轉染 pGL3-SM22-SCAP(D443N)、pGL3-control和pGL3-SCAP至CHO細胞,于4 h后換液,36~48 h后提取細胞總mRNA和胞漿蛋白。
Real-time PCR檢測SCAP基因的轉錄:將CHO細胞的總 RNA逆轉錄為 cDNA,設計兩對引物,倉鼠 β-actin引物 F4、R4和倉鼠 SCAP引物 F5、R5(表1)進行real-time PCR,根據結果進行相對定量分析。
Western blotting檢測 SCAP蛋白的表達:收集細胞提取胞漿蛋白后,50 μg/孔上樣量進行5%和 8% SDS-PAGE電泳,分離 SCAP和 β-actin,轉膜后以5%的脫脂奶粉于TBST中室溫封閉1 h,然后用相應的一抗和二抗進行雜交,最后用 ECL顯色。
圖1 pGL3-SM22-SCAP(D443N)質粒的構建Fig.1 Construction of plasmid pGL3-SM22-SCAP(D443N).
由于巢式PCR獲得的pSM22 PCR產物可以以正反兩種方向插入到pMD18-T中,所以需用酶切的方法挑選出所需方向的克隆,即BamHⅠ和Kpn I位點位于pSM22上游的T-SM22質粒。如果插入方向與預期相符,用Spe I和Hind Ⅲ雙酶切克隆質粒即得到約4.4 kb和460 bp的兩條片段(圖2)。由于BamHⅠ和BglⅡ是同尾酶,當pSM22以這兩個酶從pEGFP-SM22中切出,插入由BglⅡ單酶切的pGL3-SCAP質粒時,也會出現正反方向兩種插入形式。用酶切的方法挑選出所需方向的克隆,即選出BglⅡ和BamHⅠ的粘末端連接位于pSM22的上游,BglⅡ和BglⅡ粘末端的連接位于下游的克隆為目的質粒,如果插入方向與預期相符,用 BamHⅠ和 BglⅡ雙酶切就可得到4.3 kb和5.0 kb兩條酶切片段(圖3)。
對質粒 T-SM22和 pGL3-SM22-SCAP中的pSM22及 SCAP序列進行全長測序,結果表明pSM22與文獻報道[5]的序列同源性達 99%,SCAP與購買于ATCC的質粒pTK-HSV-SCAP-T7(D443N)中的 SCAP序列一致并存在 SCAP第 1327個堿基G→A的突變,即第443個密碼子天冬氨酸(D)→天冬酰胺(N)的突變(圖4)。
Luc測定結果顯示,SM22在VSMCs中具有啟動子活性。pGL3-enhancer陰性對照的測定值為0.23,pGL3-control-Luc的陽性對照值為 0.88(P<0.05 vs pGL3-enhancer),pGL3-SM22-Luc的測定值為 1.21(P<0.05 vs pGL3-enhancer)(圖5)。
設計內參β-actin引物F4、R4和SCAP引物F5、R5(表1)進行real-time PCR。結果顯示,轉染SCAP(D443N)的 T組與轉染 pGL3-control的C1組和轉染pGL3-SCAP的C2組比較,SCAP mRNA表達均有明顯的提高。T組與C1組比較SCAP mRNA有22倍的升高(P<0.05),兩者有顯著性差異(圖6)。
圖2 T-SM22的雙酶切鑒定Fig.2 Characterization of T-SM22 by enzyme digestion.1:DNA marker; 2: T-SM22 digested with Hind III and Spe I; 3:T-M22 plasmid.
圖3 pGL3-SM22-SCAP的雙酶切鑒定Fig.3 Characterization of pGL3-SM22-SCAP by enzyme digestion.1: DNA marker; 2: pGL3-SM22-SCAP plasmid; 3:pGL3-SM22-SCAP digested with BamH I and Bgl II.
圖4 SCAP基因測序Fig.4 Sequencing of SCAP.
利用Western blotting技術,以β-actin作為內參,檢測分別轉染了 pGL3-control、pGL3-SCAP及pGL3-SM22-SCAP(D443N)的CHO細胞的SCAP蛋白表達。正常條件下,CHO細胞中有少量正常SCAP的蛋白表達,但在轉染了 pGL3-SM22-SCAP(D443N)后,SCAP蛋白超表達,表達量明顯高于對照組(圖7)。
圖5 雙熒光素酶報告基因檢測pSM22啟動子活性Fig.5 Promoter activity of pSM22 detected by dual-luciferase reporter gene assay.NC: transfected with pGL3-enhancer; T:transfected with pGL3-SM22-Luc; PC: transfected with pGL3-control-Luc.*P<0.05 compared with NC group.
圖6 SCAP mRNA的real-time PCR結果Fig.6 SCAP mRNA level examined by real-time PCR.C1:CHO cells transfected with pGL3-control; C2: CHO cells transfected with pGL3-SCAP; T: CHO cells transfected with pGL3-SM22-SCAP(D443N).*P<0.05 compared with C1 group.
圖7 Westem blotting檢測pGL3-SM22-SCAP在CHO細胞中的蛋白表達Fig.7 Expression of SCAP protein in CHO cells(Western blotting).1: CHO cells transfected with pGL3-control; 2: CHO cells transfected with pGL3-SCAP; 3: CHO cells transfected with pGL3-SM22-SCAP(D443N).
正常生理條件下,由于SCAP能敏感地感受到細胞內脂質的變化,從而有效地控制細胞膽固醇的合成和攝取,防止泡沫細胞的形成。然而,在受外界因素如炎癥的刺激下,SCAP和SREBP的表達異常增加,以致沒有足夠的內質網滯留分子,如Insig-1來鎖住SCAP,導致即使在高細胞內膽固醇濃度的情況下,仍然運載SREBP到高爾基體內裂解激活,并激活其下游靶基因LDL受體和HMG CoA還原酶的表達,導致細胞(如 VSMCs,腎臟系膜細胞)無控制地攝取和合成LDL膽固醇,形成泡沫細胞[3,6]。當第 443個密碼子存在點突變的 SCAP即 SCAP(D443N)存在于細胞內時,細胞將完全打破胞外膽固醇的負反饋調節(jié),SCAP(D443N)不受限制地運載SREBP2至細胞核[4]。因此選擇將SCAP(D443N)過表達于細胞內將更有利于泡沫細胞的生成。
平滑肌特異蛋白 SM22是一種在平滑肌中含量豐富的蛋白。將 SM22進行克隆后發(fā)現,它可以顯著地表達于體外的不同系統,而與這種泛宿主性表達不同的是,SM22在體內同其他平滑肌標志蛋白一樣嚴格特異地表達于平滑肌細胞,而本實驗所構建質粒中的pSM22啟動子包含了從SM22的轉錄起始位點至其上游?446 bp的序列,這一區(qū)域介導了它在體內動脈平滑肌上的特異性表達[5]。
本實驗證實 pSM22在 VSMCs中具有啟動子活性。由于VSMCs為原代培養(yǎng)細胞,轉染效率有限,且細胞本身 SCAP含量豐富,不利于質粒的表達鑒定。而CHO細胞作為脂代謝相關基因的低背景細胞廣泛運用于脂代謝的研究[7-8],鑒于pSM22在體外細胞的泛宿主性及SCAP(D443N)來源于突變的CHO細胞系,本實驗構建了由pSM22啟動SCAP(D443N)的真核表達質粒瞬時轉染于野生型的CHO細胞,進行表達鑒定。結果發(fā)現轉染后的CHO細胞內SCAP mRNA及蛋白的表達量都遠遠高于未轉染組,證實構建的真核表達質粒能夠正常表達于體外細胞。結合質粒酶切鑒定及測序結果表明質粒構建成功。
由于 SCAP(D443N)的特殊生物學功能,pGL3-SM22-SCAP(D443N)質粒的成功構建對于進一步在體內研究 SCAP的各種調節(jié)功能及其在動脈硬化發(fā)生的作用具有重要意義;同時也為下一步采用原核微注射技術[9-10]得到動脈平滑肌 SCAP(D443N)特異表達的轉基因小鼠提供了材料。
REFERENCES
[1]Adams CM, Brown MS, Goldstein JL, et al.Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and insigs.J Biol Chem, 2004, 279: 52772–52780.
[2]Ma KL, Ruan XZ, Powis SH, et al.Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein E knockout mice.Hepatology,2008, 48(3): 770–781.
[3]Ruan XZ, Moorhead JF, Tao JL, et al.Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines.Arterioscler Thromb Vasc Biol,2006, 26(5): 1150–1155.
[4]Hua X, Nohturfft A, Goldstein JL, Brown MS, et al.Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein.Cell, 1996, 87: 415–426.
[5]Moessler H, Mericskay M, Li Z, et al.The SM22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice.Development, 1996, 122: 2415–2425.
[6]Ruan XZ, Varghese Z, Powis SH, et al.Dysregulation of LDL receptor under the influence of inflammatory cytokines: a new pathway for foam cell formation.Kidney Int, 2002, 60: 1716–1725.
[7]Russell A, DeBose-Boyd, Brown MS, et al.Transport-dependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi.Cell, 1999, 99: 703–712.
[8]Gong Y, Lee JN, Lee P, et al.Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake.Cell Metabolism, 2006, 3: 15–24.
[9]Simons JP, McClenaghan M, Clark AJ.Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice.Nature, 1987, 328: 530–532.
[10]al-Shawi R, Kinnaird J, Burke J, et al.Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect.Mol Cell Biol, 1990, 10(3):1192–1198.
Construction of pGL3-SM22-SCAP(D443N)eukaryotic expression vector and its expression in CHO cells
Yuanyuan Wang1, Jieli Hu1, Jing Cui1, Ailong Huang1, Xiongzhong Ruan1,2, and Yaxi Chen1
1 Center for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital,Chongqing Medical University, Chongqing 400016, China 2 Center for Nephrology, Royal Free and University College Medical School, University College London, Royal Free Campus, London, UK
Received:July 25, 2009;Accepted:September 29, 2009
Supported by:National Natural Science Foundation of China(Nos.30772295, 30871159, 30971389, 30530360), Natural Science Foundation of Chongqing(No.2008BA5016).
Corresponding author:Yaxi Chen and Xiongzhong Ruan.Tel: +86-23-68486780; Fax: +86-23-68486780; E-mail: zlcyxi@sina.com國家自然科學基金(Nos.30772295, 30871159, 30971389, 30530360),重慶市自然科學基金(No.2008BA5016)資助。