亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于相似度空間尋優(yōu)的開集人臉識別方法

        2010-07-25 07:16:26張凱
        微型電腦應(yīng)用 2010年6期
        關(guān)鍵詞:超平面識別率分值

        張凱

        0 引言

        人臉識別已成為生物統(tǒng)計學(xué)的一個重要方向,在安防、考勤、門禁等方面有著廣泛的應(yīng)用[1]。人臉識別分為閉集識別和開集識別兩種,閉集識別假定測試樣本一定屬于人臉庫中的某個已知類,識別過程中只需要找出測試樣本最相似的類別即可;而開集識別則假定測試樣本可能不屬于人臉庫中的任何一個已知類,它首先需要判斷測試樣本是否不屬于人臉庫,再找出測試樣本與人臉庫中最相似的類。

        由于開集識別更符合人臉識別系統(tǒng)在安防、門禁等場合的實(shí)用環(huán)境,因此具有更廣泛的研究價值。在已有的開集人臉識別方法中,最近鄰方法[2]獲得測試樣本與已知類樣本中相似度最大者,與一個預(yù)先設(shè)定的閾值進(jìn)行比較,若高于該閾值,則接受樣本為已知類,反之拒絕;歸一化方法[3]為了減小在識別過程中受到的光照,年齡等影響,對相似度最大值求取最小的歸一化的距離,以提高其分辨能力;文獻(xiàn)[4]引入傳導(dǎo)原理進(jìn)行集內(nèi)集外的判定,將求取的距離通過傳導(dǎo)公式轉(zhuǎn)化為置信度,再取置信度最高者與閾值做比較。雖然歸一化和傳導(dǎo)原理方法相比最近鄰都提高了相似度最大者的分類能力,在同等錯誤拒絕率的情況下,降低了錯誤接受率,但是它們同最近鄰方法一樣,都只利用了相似度最大者這一個維度的信息進(jìn)行判別。

        然而判別的信息并不僅存在于相似度最大者這一個維度中,測試樣本與各個已知類樣本求取的一系列相似度都包含了部分可用于開集判別的信息,這些信息在上述的方法中都沒有得到利用。為了充分利用這些信息,提高判別的準(zhǔn)確率,本文將所獲取的相似度構(gòu)成相似度空間,利用多個維度的相似度信息找尋最優(yōu)的超平面,利用該超平面劃分需要拒絕的樣本。

        1 基于相似度空間尋優(yōu)的判別方法

        1.1 相似度空間

        在開集人臉識別中,測試樣本與人臉庫中已知類樣本進(jìn)行比較,通過各種識別方法獲得了與每一個已知類之間的相似度。在最近鄰的方法中,直接利用相似度最大者,將其與一個預(yù)先設(shè)定的閾值進(jìn)行比較,當(dāng)大于該閾值時,則接受測試樣本為已知類樣本,否則拒絕為未知樣本。該方法僅利用了相似度最大者這一維的信息,為了利用相似度中包含的完整信息,我們將獲取的相似度按照從大到小排序,獲得相似度向量(如圖1)。

        圖1 相似度向量的獲取方法

        如果測試樣本帶有標(biāo)識,我們可以對相似度向量進(jìn)行分類。假設(shè)相似度最大者對應(yīng)類 A,共有三種情況:1、測試樣本屬于已知類別,且類別A為正確分類;2、測試樣本屬于已知類別,但類別A為錯誤分類;3、測試樣本不屬于已知類別。開集問題進(jìn)行的判別,就是將第一種情況的相似度向量與第二三種情況分開。于是將第一種情況的向量歸為0類,第二三種情況的向量歸為1類,通過大量帶標(biāo)識的測試樣本,獲得兩類相似度向量在空間中的分布。我們在FERET庫上使用PCA(Principle Component Analysis)+歐氏距離進(jìn)行實(shí)驗,獲取相似度向量的前兩維表示出來得到的分布如圖2。

        圖2 PCA+歐式距離求取的相似度向量前兩維在FERET庫上的分布

        圖2中,三角形表示的是應(yīng)該被接受的測試樣本,星型表示的是應(yīng)該被拒絕的測試樣本,虛線表示的是使用最近鄰方法進(jìn)行判別的情況,實(shí)線表示的是尋找相似度空間最優(yōu)超平面進(jìn)行判別的情況。從中明顯可以看出,僅使用相似度最大者進(jìn)行判別的方法,相當(dāng)于以垂直相似度最大者所在維度的超平面切割相似度空間,進(jìn)行開集判別,并沒有利用相似度空間所提供的全部判別信息,而利用多維的相似度空間找出的最優(yōu)超平面,能夠獲得更強(qiáng)的判別能力。

        1.2 尋找最優(yōu)切割超平面

        為了尋找最優(yōu)的切割超平面,先尋找一根法向量,再在該法向量上求取最優(yōu)的分割點(diǎn),這根法向量和分割點(diǎn)便確定了一個超平面。其尋優(yōu)指標(biāo)為該超平面的分類能力,獲取方法如下:首先用帶標(biāo)識的測試樣本通過各種識別方法,獲得與各已知類樣本的相似度,然后由各相似度構(gòu)成該接受的和該拒絕的相似度向量。在相似度空間中,需要獲得一根法向量的分類能力指標(biāo)時,將相似度空間中所有的向量向該法向量做映射。得到數(shù)軸如圖3:

        圖3 兩類的相似度向量向法向量映射(三角形為正確分類,星形為錯誤分類)

        為了尋找這根軸上最優(yōu)的閾值,假設(shè)樣本數(shù)為m,再假設(shè)當(dāng)前選定的閾值是eval[j](1 <j<m),為當(dāng)前數(shù)軸上第j個映射值。計算兩類樣本在該閾值下的集中程度:

        其中yk為分類值,當(dāng)?shù)趉個值屬于第0類時為-1,屬于第1類時為+1。curleft反應(yīng)了樣本在該閾值左邊的集中程度,若curleft > 0,表明左邊1類樣本較為集中,若curleft < 0,表明左邊0類樣本較為集中。同樣curright也反應(yīng)了樣本在該閾值右邊的集中程度。由此計算兩類樣本在該閾值下的分散程度:

        一個最好的閾值必然使得左右兩邊的分散程度達(dá)到最低,因此(curlerror+currerror)反應(yīng)了該閾值的分類能力。當(dāng)該值越小,分類能力越強(qiáng)。因此,當(dāng)獲得一根法向量時,我們對法向量上的所有閾值進(jìn)行遍歷,就可以找尋分類能力最強(qiáng)的閾值。同時也獲得了該法向量的分類能力評價。

        依照該分類能力的指標(biāo),用黃金分割法逐一尋找最優(yōu)法向量的各維度的系數(shù)。為了求取一根n維的最優(yōu)法向量[a1,a2…an],首先取a1=1,用黃金分割法搜索出最優(yōu)的a2,然后固定[a1,a2],搜索出最優(yōu)的a3,依次類推,直至搜索出[a1,a2…an]。

        2 實(shí)驗與分析

        2.1 實(shí)驗描述

        為了說明建議的方法的優(yōu)良性能,本文基于FERET[5]和 CAS[6]人臉庫共進(jìn)行兩組實(shí)驗,實(shí)驗結(jié)果采用錯誤接受率(False Accept Rate,F(xiàn)AR)和錯誤拒絕率(False Reject Rat,FRR)相等時的正確識別率進(jìn)行評估。

        圖像均經(jīng)由人眼定位、校準(zhǔn)(根據(jù)雙眼位置平面內(nèi)旋轉(zhuǎn))、大小歸一化、加掩模,直方圖均衡等處理。然后,依次通過 Gabor變換,PCA特征降維和 LDA(Linear Discriminant Analysis)特征選擇等過程。接著,選取不同的相似度求取方式,獲得相似度向量。在尋優(yōu)超平面過程中將人臉庫中一部分圖像作為訓(xùn)練集,找出最優(yōu)超平面,最后根據(jù)該超平面在非訓(xùn)練集進(jìn)行開集判別;在最近鄰方法中,選取相似度向量最大者,與閾值進(jìn)行比較進(jìn)行開集判別。

        2.2 性能分析

        表1和表2為當(dāng)FAR和FRR相等時的本文所述LDA方法和最近鄰方法的正確識別率的統(tǒng)計。在FERET數(shù)據(jù)庫中,本文所述方法在不同的識別方法中分別使識別率提高31.8%,12.3%,20.3%,6.3%;而在 CAS數(shù)據(jù)庫中,新算法在不同的識別方法中分別使識別率提高 39.1%,31.5%,3.8%,23.6%。由表1、表2可以看出,本文提出的新算法由于引入了更加豐富的相似度空間信息,顯著地提高了開集識別的性能。

        表1 在FERET上FAR=FRR時正確識別率

        表2 在CAS上FAR=FRR時正確識別率

        圖4為超平面尋優(yōu)引入前后分值的直方圖分布的比較。圖4中,人臉庫采用FERET,特征采用灰度特征,分類方法為 PCA,相似度求取方式為歐氏距離。同類分值分布曲線根據(jù)集內(nèi)樣本分值大小統(tǒng)計,異類分值分布曲線根據(jù)集外樣本分值大小統(tǒng)計。在最近鄰方法中,分值是指相似度最高值,在本方法中,分值是指相似度向量向最優(yōu)法向量映射后得到的值。圖中實(shí)線為本方法的分值分布,虛線為最近鄰方法的分值分布。

        不難看出,引入尋優(yōu)超平面方法之后,分值交疊區(qū)域大大減小,也就是說引入該方法后,集內(nèi)分值和集外分值更為分開,說明本方法在利用了相似度空間中更多信息之后,相較最近鄰方法而言,提取出的分值具有更強(qiáng)的分類能力。

        圖4 引入機(jī)器學(xué)習(xí)前后分值比較

        新算法對于各種特征和分類器具有良好的魯棒性。無論采用Gabor或灰度特征,在多種識別方法和相似度求取方式下,正確識別率明顯提高。

        3 結(jié)論

        現(xiàn)有最近鄰方法僅利用了相似度分布中一個維度的信息,為了充分利用相似度空間的信息,以提高識別率,本文針對整個相似度空間進(jìn)行尋優(yōu),尋找最優(yōu)超平面來分隔接受樣本和拒絕樣本,并通過判斷與超平面的相對位置實(shí)現(xiàn)集內(nèi)集外的判別過程。本文所述相似度空間尋優(yōu)方法對于各種特征和分類器具有良好的魯棒性,無論采用 Gabor或灰度特征,在多種識別方法和相似度求取方式下,識別正確率總在尋優(yōu)后明顯提高。算法簡便,易于實(shí)現(xiàn),適于多種人臉庫、多種特征以及識別方法。實(shí)驗表明該算法在判別準(zhǔn)確率上,明顯高于傳統(tǒng)的最近鄰判別方法。

        [1]Jain A K, Ross A and Prabhakar S: An Introduction to Biometric Recognition[J].IEEE Trans on Circuits and Systems for Video Technology, Special Issue on Image and Video Based Biometrics, 2004, 14(1): 4-20.

        [2]Richard O,Duda, Peter E.Hart, David G.Stork. Pattern Classification[M]. New York: John Wiley & Sons,Inc.2001:146-160.

        [3]Jain A K, Nandakumar K, Ross A A. Score Normalization in Multimodal Biometric Systems[J].Pattern Recognition,2005, 38(12): 2270-2285.

        [4]Fayin Li,and Harry Wechsler.Open Set Face Recognition Using Transduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1686-1697.

        [5]Phillips P J, Moon H.et al. The FERET evaluation methodology for face-recognition algorithms[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2000,22(10): 1090-1104.

        [6]Wen Gap, Bo Cao.Shiguang Shan et al. The CAS-PEAL Large-Scale Chinese Face Database and Evaluation Protocols[R],Joint Research & Development Laboratory,CAS, No.JDL_TR_04_FR_001, 2004.

        猜你喜歡
        超平面識別率分值
        一起來看看交通違法記分分值有什么變化
        工會博覽(2022年8期)2022-06-30 12:19:30
        全純曲線的例外超平面
        涉及分擔(dān)超平面的正規(guī)定則
        基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測
        基于真耳分析的助聽器配戴者言語可懂度指數(shù)與言語識別率的關(guān)系
        以較低截斷重數(shù)分擔(dān)超平面的亞純映射的唯一性問題
        提升高速公路MTC二次抓拍車牌識別率方案研究
        高速公路機(jī)電日常維護(hù)中車牌識別率分析系統(tǒng)的應(yīng)用
        分擔(dān)超平面的截斷型亞純映射退化性定理
        宿遷城鎮(zhèn)居民醫(yī)保按病種分值結(jié)算初探
        久久尤物av天堂日日综合| 久久精品夜色国产亚洲av| 熟妇的荡欲色综合亚洲| 五月激情婷婷丁香| 人妻丝袜中文字幕久久 | 久久九九青青国产精品| 亚洲精品一区二区三区日韩| 亚洲国产精品一区二区毛片| 极品粉嫩嫩模大尺度视频在线播放| 亚洲午夜无码毛片av久久| 国产精品自在线拍国产| 中文字幕精品久久久久人妻红杏1 丰满人妻妇伦又伦精品国产 | 精品女同一区二区三区在线播放器 | 国产精品自产拍在线18禁| 亚洲第一女人天堂av| 一区二区三区精品少妇| 国产精一品亚洲二区在线播放| 国产AV无码专区亚洲AV桃花庵| 亚洲精品女同在线观看| 国产亚洲精品久久午夜玫瑰园 | 国产亚洲精品一区在线| 国产农村熟妇videos| 国产精品久久久久久久成人午夜| 成在线人免费无码高潮喷水| 一区二区三区手机看片日本韩国| 日韩乱码中文字幕在线| a级毛片高清免费视频就| 日韩成人无码v清免费| 91精品福利一区二区三区| 国产精品免费看久久久无码| 亚洲成人小说| 国产传媒剧情久久久av| 风韵丰满熟妇啪啪区99杏| 野狼第一精品社区| 国产精品久久久久孕妇| 日韩精品免费视频久久| 在线看片免费人成视频电影| 在线视频99| 精品久久一区二区av| 豆国产96在线 | 亚洲| 国产性猛交╳xxx乱大交|