摘 要:設(shè)計出一種基于C8051F410單片機(jī)的多功能智能給水控制器,并詳細(xì)介紹了系統(tǒng)的軟硬件設(shè)計。該控制器的硬件由數(shù)據(jù)采集、人機(jī)接口、電機(jī)控制和電源等模塊組成,利用單片機(jī)的ADC模塊采集管道壓力,同時控制ADC模塊的輸出,以改變泵的運(yùn)轉(zhuǎn)速率,從而維持水壓的動態(tài)穩(wěn)定。其中,恒壓控制算法采用先進(jìn)的數(shù)字PID控制理論,有機(jī)地融合了變頻調(diào)速技術(shù)和單片機(jī)技術(shù)。該系統(tǒng)能夠滿足一個小區(qū)或一棟高樓居民對供水的需求,且具有高性能、高可靠性、低成本、低能耗等特點。
關(guān)鍵詞:恒壓供水;數(shù)據(jù)采集;PID控制;變頻調(diào)速
中圖分類號:TP368.2文獻(xiàn)標(biāo)識碼:B
文章編號:1004-373X(2010)06-004-04
Design of Intelligent Water Supply Controller
SUN Jinwei,WANG Chao,WEI Guo
(School of Electrical Engineering and Automation,Harbin Institute of Technology,Harbin,150001,China)
Abstract:A constant-pressure water supply controller based on C8051F410 Micro Controller Unit(MCU)core is designed,and the design of the system′s hardware and software are also introduced in detail.The controller consists of several modules,such as data signal collection module,human-machine interface module,motor control module and power module.The MCU′s AD module collects the pipeline′s pressure,and DA module controls speed of the pump,thereby water pressure is kept stably.The control method is PID theory,integrates VF speed and MCU technique.The system can satisfy the inhabitants′ demands,and has characteristics of high-performance,high-reliability,low-cost and low-energy consumption.
Keywords:constant-pressure water supply;data collection;PID control;VF speed
0 引 言
隨著經(jīng)濟(jì)的快速發(fā)展和城市高層建筑的不斷涌現(xiàn),人們對供水質(zhì)量和供水系統(tǒng)可靠性的要求不斷提高[1],加上目前能源緊缺對節(jié)能的要求,因此利用先進(jìn)的電子測控技術(shù)和自動化控制技術(shù),設(shè)計高性能、高可靠性、低成本、低能耗,以及能適用不同領(lǐng)域的恒壓供水系統(tǒng)也就成為必然趨勢。隨著近年來變頻調(diào)速技術(shù)的飛速進(jìn)步,變頻恒壓供水也在其基礎(chǔ)上慢慢發(fā)展起來,并成為一種新興的現(xiàn)代化供水技術(shù)[2]。
目前,國外的恒壓供水工程設(shè)計都采用一臺變頻器只帶一臺水泵機(jī)組的方式,幾乎沒有用一臺變頻器拖動多臺水泵機(jī)組運(yùn)行的情況,這種方式不但投資成本較高,且功能單一[3]。
為此設(shè)計了在變頻調(diào)速控制系統(tǒng)中加入基于C8051F410的單片機(jī)系統(tǒng),構(gòu)成了功能更強(qiáng)的復(fù)合控制系統(tǒng),它不但克服了以上缺點,而且具有安裝調(diào)試方便,功能全面,可靠性高,抗干擾能力強(qiáng)等優(yōu)點,且可以廣泛應(yīng)用于工業(yè)生產(chǎn)、社會生活的各個領(lǐng)域。
1 控制原理
在恒壓供水系統(tǒng)中,安裝于管網(wǎng)的遠(yuǎn)傳壓力表提供水壓力信號,并經(jīng)過光電隔離和電壓轉(zhuǎn)換電路,傳送給系統(tǒng)的中心控制器,控制器將采集到的壓力數(shù)據(jù)與預(yù)設(shè)壓力進(jìn)行比較,得出偏差值,再經(jīng)PID運(yùn)算之后得出控制參數(shù),D/A模塊將控制參數(shù)轉(zhuǎn)換為模擬電壓輸出,調(diào)節(jié)變頻器的輸出頻率,從而控制水泵的轉(zhuǎn)速,以保證管網(wǎng)壓力基本恒定。當(dāng)用水量增大時,管網(wǎng)壓力低于預(yù)設(shè)值,變頻器頻率就會升高,水泵轉(zhuǎn)速加快,從而提升管道水壓,但若達(dá)到水泵額定輸出功率仍無法滿足用戶供水要求時,該泵自動轉(zhuǎn)換成工頻運(yùn)行狀態(tài),并變頻啟動下一臺水泵;反之,當(dāng)用水量減少,則降低水泵運(yùn)行頻率直至設(shè)定的下限運(yùn)行頻率,若供水量仍大于用水量,則減泵直至全部泵停止工作,經(jīng)過一定的延時,控制器重新比較壓力,并計算控制輸出,從而維持恒壓供水[4]。它的系統(tǒng)原理框圖如圖1所示。
該系統(tǒng)可以同時控制2臺水泵,根據(jù)不同的場合可以采用不同的運(yùn)行模式,如單泵運(yùn)行、一用一補(bǔ)、一工一變、定時換泵等[5]。
圖1 變頻調(diào)速恒壓供水系統(tǒng)原理框圖
2 系統(tǒng)總體方案
系統(tǒng)的硬件和軟件采用模塊化、標(biāo)準(zhǔn)化設(shè)計,并充分考慮系統(tǒng)的擴(kuò)展能力??刂破饔芍骺匕?、顯示按鍵面板和電源板三部分組成。圖2是控制器的結(jié)構(gòu)框圖,其工作原理是:首先用戶通過顯示按鍵面板設(shè)定預(yù)設(shè)壓力和控制器運(yùn)行的各個功能參數(shù),保存至E2PROM存儲器用作掉電存儲,位于用戶管網(wǎng)端的遠(yuǎn)傳壓力表輸出的電壓或是電流信號經(jīng)過采樣電路轉(zhuǎn)化為數(shù)字量,送入單片機(jī)與預(yù)設(shè)壓力進(jìn)行比較,計算并輸出模擬控制量和繼電器輸出狀態(tài)量。其中,模擬控制量輸出經(jīng)過變頻器控制模塊電路送給變頻器,用以控制變頻器的輸出頻率;繼電器輸出狀態(tài)量經(jīng)過繼電器輸出電路送給繼電器組,用以控制各個泵工作于工頻或是變頻狀態(tài)[6]。最后單片機(jī)把實際壓力值、預(yù)設(shè)壓力值、輸出頻率和各個泵的工作狀態(tài)送到顯示面板,以便用戶進(jìn)行觀測和操作。
圖2 系統(tǒng)整體設(shè)計框圖
3 系統(tǒng)單元電路
3.1 主控制器的選擇
主控制器選用單片機(jī)C8051F410,它是一款完全集成的混合信號片上系統(tǒng)型芯片,其內(nèi)部還集成了12位高速ADC模塊和電流輸出型DAC模塊,同時硬件實現(xiàn)的SMBus和UART串行接口,能方便處理器與E2PROM通信和數(shù)據(jù)串行輸出。C8051F410還支持JTAG實時仿真和跟蹤,能夠進(jìn)行非侵入式(不占用片內(nèi)資源)的全速在系統(tǒng)調(diào)試。
3.2 系統(tǒng)電源電路
該設(shè)計采用基于三端穩(wěn)壓芯片TOP221Y的高精度開關(guān)穩(wěn)壓電源電路,主電路拓?fù)浣Y(jié)構(gòu)選用單端反激式直流變換電路,其輸出采用兩組直流低壓電源:主回路為系統(tǒng)的數(shù)字電路部分提供5 V直流電源,副回路為系統(tǒng)的模擬部分提供15 V直流電源。
3.3 壓力表信號采集與光電隔離電路
位于用戶管網(wǎng)的壓力傳感器監(jiān)測到的壓力信號經(jīng)過光電隔離電路進(jìn)行濾波和隔離處理后,進(jìn)入C8051F410內(nèi)部的ADC模塊,實現(xiàn)按比例轉(zhuǎn)換,轉(zhuǎn)換為12 b數(shù)字量,以供單片機(jī)對其信號進(jìn)行處理和計算。為了保證輸入量與轉(zhuǎn)換量程相稱,充分發(fā)揮A/D轉(zhuǎn)換器的分辨率,在對壓力信號進(jìn)行A/D轉(zhuǎn)換之前經(jīng)過光電隔離電路時,就已將外部傳入的0~5 V模擬電壓轉(zhuǎn)換為0~2 V模擬電壓信號。電路原理如圖3所示。
圖3 壓力表電壓采樣原理圖
由圖3可見,外部電壓信號從IN端口接入,經(jīng)過隔離和濾波電路,轉(zhuǎn)換為0~2 V電壓,從ADC端口送入單片機(jī)。同時在模擬信號采集到單片機(jī)系統(tǒng)的過程中,各種干擾信號都會隨著被測量信號進(jìn)入MCU控制系統(tǒng),這些信號迭加在有用的被測信號上會降低測量的準(zhǔn)確度,造成控制系統(tǒng)的不穩(wěn)定。以上電路設(shè)計便利用線性光耦進(jìn)行光電之間的相互轉(zhuǎn)換,利用光作為媒介進(jìn)行信號傳輸,在電氣上使測量系統(tǒng)與現(xiàn)場信號完全隔離,從而實現(xiàn)了電平線性轉(zhuǎn)換且不把現(xiàn)場的電噪聲干擾引入到控制系統(tǒng)中[7]。
3.4 控制變頻器輸出電路
單片機(jī)通過內(nèi)部的電流輸出型數(shù)/模轉(zhuǎn)換模塊(IDAC),將計算得出的數(shù)字量轉(zhuǎn)化為模擬電壓輸出,其輸出電壓經(jīng)過濾波和比例轉(zhuǎn)換處理后用來控制變頻器的頻率。同時為了保證單片機(jī)IDAC輸出電壓穩(wěn)定可靠,不受干擾,外部電路同樣采用了光電隔離電路,其電路原理圖如圖4所示。
圖4 控制變頻器模擬電壓輸出電路原理圖
3.5 外擴(kuò)E2PROM存儲器電路
該設(shè)計采用Atmel公司的E2PROM芯片AT24C02,其體積小,性能優(yōu),使用靈活方便,能夠在系統(tǒng)掉電之后存儲一些用戶設(shè)定和運(yùn)行的狀態(tài)參數(shù),以便重新啟動機(jī)器之后讀取。處理器自身集成的SMBus兼容I2C接口,可以直接與AT24C02通信,此方案不僅設(shè)計單,工作可靠,而且成本低廉。電路原理如圖5所示。
圖5 E2PROM電路原理圖
3.6 繼電器控制輸出電路
主控制器驅(qū)動5個靈敏繼電器K1~K5,分別控制1個泄流閥和2個泵電機(jī),實現(xiàn)對泄流閥的打開與關(guān)斷控制和泵的變頻或工頻狀態(tài)切換。單片機(jī)通過信號線RX與TX將繼電器狀態(tài)控制信號串行輸出給串行移位寄存器芯片74HC595D,由74HC595D將輸出狀態(tài)的硬件鎖存,以防止輸出狀態(tài)被干擾,最后通過達(dá)林頓管ULN2003提高驅(qū)動能力,以控制水泵電機(jī)的工作狀態(tài)和泄流閥的動作[8] 。
4 控制器的軟件設(shè)計
該設(shè)計中對變頻器輸出頻率的調(diào)節(jié)采用PID控制算法,其控制算法就是對偏差的比例、積分和微分。它是連續(xù)系統(tǒng)中技術(shù)成熟,應(yīng)用最廣泛的一種算法,特別是在工業(yè)控制中,因為控制對象的精確數(shù)學(xué)模型很難建立,系統(tǒng)參數(shù)又經(jīng)常發(fā)生變化,因此常采用PID控制算法[9],其控制示意圖如圖6所示。
它的數(shù)學(xué)表達(dá)式為:
y(t)=KPe(t)+KI∫e(t)dt+KDde(t)dt(1)
式中:KP,KI和KD分別為比例系數(shù)、積分系數(shù)和微分系數(shù);e(t)為誤差。
式(1)離散化后可以用計算機(jī)很方便地實現(xiàn),其位置式PID控制規(guī)律的數(shù)學(xué)表達(dá)式為:
y(n)=KPe(n)+KI∑je(j)T+KDT+
(2)
式中:e(j)為第j次采樣的誤差值;T為采樣周期。
圖6 PID算法控制示意圖
在實際應(yīng)用中,一般選擇增量式PID控制規(guī)律。因為增量型算法與位置型算法相比,前者不需要做累加,不易產(chǎn)生大的累加誤差,而且得出的是控制量的增量,誤動作的影響比較小,更易于實現(xiàn)手動到自動的無沖擊切換[6]。增量式數(shù)字PID控制算式為:
Δy=y(n)-y(n-1)=KP+
KIe(n)T+KDT (3)
在該設(shè)計中,執(zhí)行機(jī)構(gòu)采用變頻器,由于采用增量式數(shù)字PID控制算法,所以對于每個采樣周期,控制器輸出的控制量都相對于上次的增加量,其系統(tǒng)控制算法流程如圖7所示。
圖7 增量式數(shù)字PID算法輸出控制流程圖
圖7為增量式數(shù)字PID算法在整個系統(tǒng)中的控制流程,每次進(jìn)入A/D定時采集中斷,壓力信號便會被轉(zhuǎn)化為數(shù)字量,PID控制模塊便將壓力信號的數(shù)字量通過算法處理得出相應(yīng)的控制輸出數(shù)字量,接著啟動D/A將數(shù)字輸出轉(zhuǎn)換為模擬電壓輸出,其模擬電壓輸出用以控制變頻器。此模塊配合繼電器開關(guān)輸出模塊和壓力采集模塊,通過相應(yīng)的控制策略實現(xiàn)實時測量和控制,保持供水管網(wǎng)壓力的動態(tài)平衡。為了方便現(xiàn)場調(diào)試,在設(shè)計中使PID調(diào)整的上升、下降和跟蹤采樣周期的設(shè)定值可變,可以在開機(jī)時通過鍵盤改變其值,從而改變PID參數(shù),以適應(yīng)不同場合的控制需要。
如圖8所示,曲線1是參數(shù)調(diào)整前電機(jī)模塊控制電壓隨時間變化的響應(yīng)曲線;曲線2為參數(shù)經(jīng)過多次調(diào)整之后的響應(yīng)曲線??梢钥闯?,經(jīng)過參數(shù)調(diào)整,系統(tǒng)的響應(yīng)性能有了較大的提高,所以在實際應(yīng)用環(huán)境中需要經(jīng)過多次調(diào)整設(shè)定值,以保證達(dá)到最佳的控制性能[10]。
圖8 PID算法的系統(tǒng)響應(yīng)曲線圖
5 結(jié) 語
分析了智能給水控制器的軟件和硬件設(shè)計。該控制器以SoC單片機(jī)C8051F410為核心, 實現(xiàn)了對管網(wǎng)壓力的采集,對變頻器輸出的控制,而且擁有獨特靈活的用戶界面??刂破鞑坏蓸雍涂刂凭雀撸矣歇┒喾N保護(hù)和抗干擾功能,保證了控制器的穩(wěn)定性和安全性。采用控制器和變頻器構(gòu)成的恒壓供水系統(tǒng),不僅大大提高了供水質(zhì)量,而且節(jié)能降耗效果也較為顯著,在當(dāng)今國家能源緊張的情況下,具有重要的現(xiàn)實意義。
參考文獻(xiàn)
[1]李華德.系統(tǒng)調(diào)速控制[M].北京:電子工業(yè)出版社,2003.
[2]邱瑞生,楊濱.采用交流調(diào)壓調(diào)速的方法實現(xiàn)高樓供水[J].自動化技術(shù)與應(yīng)用,2002,21(4):24-26.
[3]蘇憲龍,李山,苗亮亮.變頻調(diào)速在油田抽油機(jī)控制系統(tǒng)中的應(yīng)用[J].現(xiàn)代電子技術(shù),2008,31(11):123-126.
[4]吳宜珍.高層住宅變頻調(diào)速恒壓供水系統(tǒng)設(shè)計[J].微計算機(jī)信息,2007,23(5):150-152.
[5]楊金牛,李眾.采用模糊控制策略改進(jìn)小區(qū)恒壓供水系統(tǒng)[J].中國給水排水,2008,24(2):46-48.
[6]蔣新峰,王秋光.具有無線傳輸功能的給水控制器的開發(fā)[J].哈爾濱理工大學(xué)學(xué)報,2008,13(2):94-97.
[7]鐘小強(qiáng).基于單片機(jī)實現(xiàn)的液位控制器設(shè)計[J].現(xiàn)代電子技術(shù),2009,32(2):51-54.
[8]李世偉,鄭平,邵子惠.基于HMI與PLC的變頻調(diào)速系統(tǒng)設(shè)計[J].現(xiàn)代電子技術(shù),2008,31(19):105-106.
[9]田思慶,朱傳剛,李晶.自適應(yīng)模糊PID控制器在供水系統(tǒng)的仿真研究[J].現(xiàn)代電子技術(shù),2008,31(7):122-124.
[10]左鵬軍.兩種模式PID控制變頻器調(diào)速恒壓供水系統(tǒng)[J].電力電子技術(shù),2007(1):43-46.