王民,盧雙舫,李吉君,薛海濤,宋建陽(yáng)
(大慶石油學(xué)院)
川東北地區(qū)飛仙關(guān)組氣藏兩種氣源生氣史及相對(duì)貢獻(xiàn)
王民,盧雙舫,李吉君,薛海濤,宋建陽(yáng)
(大慶石油學(xué)院)
中國(guó)西部發(fā)現(xiàn)的大量天然氣多具有干酪根降解和原油裂解兩種裂解氣特征,選擇有機(jī)質(zhì)豐度高、成熟度低的新疆三塘湖盆地二疊系灰?guī)r樣品和川東北地區(qū)飛仙關(guān)組灰?guī)r抽提油樣,設(shè)計(jì)并完成了有機(jī)質(zhì)成油、成氣和油成氣模擬實(shí)驗(yàn),以考察這兩種裂解氣氣源生氣史和其對(duì)氣藏的貢獻(xiàn)。根據(jù)熱模擬實(shí)驗(yàn)結(jié)果建立并標(biāo)定了干酪根生油、生氣及油成氣的化學(xué)動(dòng)力學(xué)模型,并運(yùn)用該模型評(píng)價(jià)了川東北地區(qū)二疊系烴源巖生油史、生氣史及三疊系飛仙關(guān)組古油藏裂解成氣史。研究結(jié)果表明,川東北地區(qū)二疊系烴源巖主要生油時(shí)期為距今210~190 Ma,主要生氣期為距今205~185 Ma(印支晚期),三疊系飛仙關(guān)組油裂解生氣主要時(shí)期為距今165~150 Ma。根據(jù)兩種裂解氣的生氣史,初步估算了兩種裂解氣的相對(duì)貢獻(xiàn),其中干酪根生氣和油裂解生氣相對(duì)比例分別為17%和83%。圖3表1參40
川東北;飛仙關(guān)組;油裂解氣;化學(xué)動(dòng)力學(xué)
中國(guó)西部疊合盆地中下部海相地層普遍具有沉積時(shí)代老、分布廣、有機(jī)碳含量低、熱演化程度高、埋藏深度大、油氣藏遭破壞多等特點(diǎn)[1],給油氣評(píng)價(jià)工作增加了難度。然而近10年來(lái)隨著油氣勘探程度的提高,繼四川盆地川東北石炭系勘探獲得成功后,川東北下三疊統(tǒng)飛仙關(guān)組鮞灘儲(chǔ)集層勘探也獲得重大突破,發(fā)現(xiàn)了一批大氣田[2],預(yù)計(jì)近期飛仙關(guān)組與長(zhǎng)興組天然氣的探明儲(chǔ)量可達(dá)萬(wàn)億立方米。中國(guó)西部疊合盆地油氣勘探以天然氣為主并不是偶然的,而是與有機(jī)質(zhì)的熱演化階段有關(guān)。盧雙舫等指出塔里木盆地的氣資源前景優(yōu)于油資源前景,并通過(guò)對(duì)天然氣主控因素進(jìn)一步剖析,得出四川盆地是最具天然氣勘探前景盆地的認(rèn)識(shí)[3,4]。實(shí)際上,這些富含氣盆地的氣源除了干酪根降解生氣外,還存在另一種重要的氣源——原油裂解氣。盡管不同地區(qū)由于地質(zhì)條件的不同,原油在儲(chǔ)集層中保存的溫度會(huì)有差異,但一般認(rèn)為當(dāng)儲(chǔ)集層溫度超過(guò)160℃以后原油將發(fā)生熱裂解,油藏中的氣油比明顯上升;當(dāng)儲(chǔ)集層溫度高于200℃,原油將全部轉(zhuǎn)化為天然氣[5]。西部盆地中—古生界油氣藏溫度都超過(guò)(或曾經(jīng)超過(guò))了160℃,四川盆地石炭系黃龍組、三疊系飛仙關(guān)組的儲(chǔ)集層瀝青很好地佐證了早期形成的油藏在后期熱動(dòng)力學(xué)條件下發(fā)生裂解這一事實(shí)[6,7]。目前,油裂解對(duì)氣藏的貢獻(xiàn)引起國(guó)內(nèi)外學(xué)者的廣泛重視[5,8-19],并且原油裂解氣為中國(guó)西部盆地大中型氣田主要?dú)庠吹玫皆絹?lái)越多學(xué)者的認(rèn)同[20-22]。
然而,在這些具有兩種氣源的大—中型氣田中,氣源是以干酪根裂解氣為主,還是以油裂解氣為主,二者的相對(duì)貢獻(xiàn)如何?這一問(wèn)題的解答對(duì)于盆地天然氣資源評(píng)價(jià)很有意義。目前主要是利用天然氣組分及碳同位素資料鑒別原油裂解氣和干酪根熱裂解氣[9,23],認(rèn)為干酪根裂解過(guò)程中C1/C2值增加較大而C2/C3值變化極小,二次裂解過(guò)程C1/C2值基本不變而C2/C3值迅速增加。從機(jī)理上分析,干酪根裂解氣主要是干酪根結(jié)構(gòu)上的芳甲基和終端甲基降解成氣,所以隨降解程度增高,C1的量增長(zhǎng)較快,C2和C3變化較小;而油裂解氣主要是長(zhǎng)鏈脂肪結(jié)構(gòu)碳的斷裂,所以有大量C2和C3組分的生成[24]。但是也有學(xué)者通過(guò)對(duì)熱模擬實(shí)驗(yàn)產(chǎn)物的分析得出了與上述觀點(diǎn)完全不同的認(rèn)識(shí)[25]。再加上運(yùn)移過(guò)程中存在分餾作用,使得鑒別兩種來(lái)源氣的相對(duì)貢獻(xiàn)更加困難。
為此,本文選擇有機(jī)質(zhì)豐度高、成熟度低的新疆三塘湖盆地二疊系灰?guī)r樣品進(jìn)行熱解實(shí)驗(yàn);采用通常認(rèn)為最接近于自然演化狀態(tài)的小金管裝置,在密閉、高壓條件下對(duì)四川盆地飛仙關(guān)組抽提油樣分別在不同的溫度條件下加熱,進(jìn)行油裂解氣實(shí)驗(yàn)。根據(jù)熱模擬實(shí)驗(yàn)結(jié)果建立溫度和轉(zhuǎn)化率關(guān)系,結(jié)合建立的干酪根生油、生氣及油成氣的化學(xué)動(dòng)力學(xué)模型,標(biāo)定樣品的動(dòng)力學(xué)參數(shù),并探討其意義;再結(jié)合前人對(duì)川東北地區(qū)地史和熱史研究成果,對(duì)研究區(qū)的成烴史和兩種不同來(lái)源氣的相對(duì)貢獻(xiàn)進(jìn)行探討。
研究所用樣品為新疆三塘湖盆地二疊系灰?guī)r樣品,有機(jī)碳含量4.49%,最高熱解溫度(Tmax)441℃,氫指數(shù)(IH)418 mg/g,氧指數(shù)(IO)21 mg/g,烴指數(shù)(S1/TOC)23.39 mg/g,碳酸鹽含量73.75%。該樣品最為珍貴之處在于它的低成熟度(Ro=0.37%)和較高有機(jī)質(zhì)豐度,據(jù)筆者所知為國(guó)內(nèi)能采集到的成熟度最低的碳酸鹽巖樣品,因而是難得的適合進(jìn)行成烴模擬實(shí)驗(yàn)研究的碳酸鹽巖源巖樣品。由于四川盆地難以采集到成熟度較低、適合用于熱模擬實(shí)驗(yàn)的碳酸鹽巖樣品,本研究不得不選用三塘湖盆地灰?guī)r樣品代替。川東北地區(qū)由于熱演化程度較高,原油都發(fā)生了熱裂解,很難取到飛仙關(guān)組油樣,因此選用了下三疊統(tǒng)飛仙關(guān)組灰?guī)r樣品中的抽提液態(tài)烴(抽提物)作為模擬油樣。
為了獲取標(biāo)定有機(jī)質(zhì)成油、成氣的化學(xué)動(dòng)力學(xué)模型所必需的溫度-產(chǎn)油率(產(chǎn)氣率)關(guān)系曲線,設(shè)計(jì)并開展了2組實(shí)驗(yàn),其中有機(jī)質(zhì)成油成氣采用Rock-Eval開放體系熱解,抽提物采用國(guó)際上比較流行的封閉體系的金管實(shí)驗(yàn)[26]。
采用Rock-Eval-Ⅱ型熱解儀,在不同升溫速率條件下將樣品從200℃加熱升溫至600℃,實(shí)時(shí)記錄產(chǎn)物量;然后在相同的加熱溫度范圍和升溫速率條件下,以30℃的溫度間隔收集熱解產(chǎn)物并進(jìn)行氣相色譜分析(PY-GC分析),從氣相色譜圖上定出各個(gè)溫度段氣體(C1—C5)和液體(C6+)組分的百分含量,結(jié)合前一實(shí)驗(yàn)結(jié)果,即可得出不同升溫速率條件下各溫度點(diǎn)的生油量和生氣量,進(jìn)而得出產(chǎn)油率-溫度和產(chǎn)氣率-溫度的關(guān)系,供標(biāo)定成油、成氣的動(dòng)力學(xué)參數(shù)之用。
金管實(shí)驗(yàn)的突出優(yōu)點(diǎn)是可以利用金管良好的可塑性對(duì)實(shí)驗(yàn)壓力進(jìn)行靈活的設(shè)置和調(diào)控,而所施加的壓力正是研究所需的流體壓力。本文用金管實(shí)驗(yàn)?zāi)M地質(zhì)條件下原油裂解成氣的過(guò)程,進(jìn)而研究其成氣動(dòng)力學(xué)行為。
實(shí)驗(yàn)采用限定體系,金管的壁厚為0.2 mm,外徑4 mm,最大容積1 cm3;加樣量范圍為5~100 mg油樣。將裝樣后的金管置于氬氣箱中,置換出管中空氣,用高頻焊機(jī)進(jìn)行焊封,并將焊封好的金管放入以水為壓力介質(zhì)的高壓釜中。系統(tǒng)可同時(shí)接入15個(gè)高壓釜,每一個(gè)高壓釜連接一個(gè)截止閥并最終連接于同一壓力系統(tǒng)中。通過(guò)壓力控制系統(tǒng)把體系壓力控制在設(shè)定的壓力點(diǎn)上,壓力表的精度為0.5 MPa。高壓釜置于恒溫水箱中,恒溫水箱可以一定的升溫速率恒速升溫,控溫儀精度為0.1℃。這樣各個(gè)金管都處在相同的壓力、溫度條件下。壓力、溫度系統(tǒng)都受控于中心控制電腦。
在50 MPa的壓力下,分別以20℃/h和2℃/h的升溫速率將抽提物從200℃升溫至600℃以上。在某一目標(biāo)溫度點(diǎn)時(shí)關(guān)閉某一個(gè)高壓釜連接的截止閥,把該高壓釜從恒溫箱中取出,待冷卻后取出金管。將金管置于特制的氣體收集、定量系統(tǒng)中進(jìn)行精確計(jì)量,并用HP6890氣相色譜儀進(jìn)行 GC分析。金管用液氮冷凍后,迅速剪開放入溶劑內(nèi),超聲震蕩5 min,輕烴完全沒(méi)有損失,實(shí)現(xiàn)對(duì)殘留油的定量。由氣體體積和樣品量可得各實(shí)驗(yàn)點(diǎn)單位質(zhì)量樣品的產(chǎn)氣量。在最高實(shí)驗(yàn)溫度點(diǎn)(高于600℃)時(shí)油裂解成氣能力已接近枯竭,由此可以計(jì)算出油樣全部裂解成氣的最大(極限)產(chǎn)氣率。各實(shí)驗(yàn)點(diǎn)產(chǎn)氣率與極限產(chǎn)氣率的比值即為各點(diǎn)的成氣轉(zhuǎn)化率,由此可得成氣轉(zhuǎn)化率-受熱溫度關(guān)系曲線,供標(biāo)定油成氣的化學(xué)動(dòng)力學(xué)模型時(shí)用。
目前已報(bào)道的描述有機(jī)質(zhì)成烴的化學(xué)動(dòng)力學(xué)模型有總包反應(yīng)[27,28]、串聯(lián)反應(yīng)[29]、平行反應(yīng)[30,31]、連串反應(yīng)[9]等多種反應(yīng)速率模型,并且每一種模型又可分為若干亞型。但大量的研究證明,有機(jī)質(zhì)成烴是一個(gè)非常復(fù)雜的動(dòng)力學(xué)過(guò)程,而且這個(gè)過(guò)程可以用平行一級(jí)反應(yīng)進(jìn)行描述。本文選擇具有較廣泛代表性的平行一級(jí)反應(yīng)速率模型描述有機(jī)質(zhì)成油、成氣過(guò)程。建立的干酪根成氣化學(xué)動(dòng)力學(xué)模型為:
式中 Ng——平行一級(jí)反應(yīng)數(shù);Egi——第 i個(gè)(i=1,2,…,Ng)反應(yīng)的活化能,kJ/mol;Agi——第 i個(gè)(i=1,2,…,Ng)反應(yīng)的指前因子,min-1;Xgi0——對(duì)應(yīng)第 i個(gè)(i=1,2,…,Ng)反應(yīng)的干酪根成氣原始潛量,無(wú)因次;R——?dú)怏w常數(shù),8.314 47 J/(mol·K);T——絕對(duì)溫度 ,K;D ——升溫速率 ,K/min;Xgi——第 i個(gè)(i=1,2,…,Ng)干酪根成氣反應(yīng)對(duì)應(yīng)的生氣轉(zhuǎn)化率;Xg——所有 Ng個(gè)平行反應(yīng)的總生氣轉(zhuǎn)化率;T0——實(shí)驗(yàn)開始計(jì)量溫度,K。
將上式中的有關(guān)下標(biāo)由g(氣體)分別改為o(油)、og(油成氣),即為干酪根生油、油成氣化學(xué)動(dòng)力學(xué)模型。具體的標(biāo)定方法見(jiàn)文獻(xiàn)[26]。
表1列出了按上述原理標(biāo)定得到的樣品中有機(jī)質(zhì)成油和有機(jī)質(zhì)直接成氣的動(dòng)力學(xué)參數(shù);圖1繪出了不同升溫速率下樣品中有機(jī)質(zhì)成油、成氣的實(shí)驗(yàn)轉(zhuǎn)化率和由標(biāo)定所得化學(xué)動(dòng)力學(xué)參數(shù)(模型)計(jì)算的相應(yīng)條件下的理論轉(zhuǎn)化率曲線,二者之間較好的吻合初步表明了標(biāo)定所得模型的精度及可行性。同時(shí)圖1也繪出了相應(yīng)的活化能分布,可以看出,有機(jī)質(zhì)成油的活化能低于其成氣活化能。油成氣反應(yīng)的平均活化能(243.49 kJ/mol)與干酪根成油(210.82 kJ/mol)、成氣(214.78 kJ/mol)的活化能分布相比明顯偏高,表明油裂解成氣較干酪根成油、成氣更晚一些,需要在更高的溫度條件下反應(yīng)。
川東北地區(qū)二疊系深水相、半深水相暗色泥晶灰?guī)r作為三疊系飛仙關(guān)組氣藏和古油藏的重要烴源巖已經(jīng)得到廣大學(xué)者的認(rèn)同[7,32-34]。近年來(lái),部分學(xué)者加強(qiáng)了成烴與成藏研究,指出飛仙關(guān)組鮞灘氣藏氣源主要來(lái)自二疊系,屬于高成熟階段的原油裂解氣[15,35,36];有機(jī)質(zhì)類型以腐泥型為主,具有典型海相碳酸鹽巖有機(jī)質(zhì)特征,恢復(fù)生烴潛力達(dá) 684 mg/g,有機(jī)碳含量達(dá)0.65%,恢復(fù)方法見(jiàn)文獻(xiàn)[37]。本次研究中古地表溫度和地?zé)崽荻葏⒄涨叭搜芯砍晒鸞32,38,39],選取五科1井埋藏史,結(jié)合上述模型標(biāo)定的動(dòng)力學(xué)參數(shù)進(jìn)行地質(zhì)應(yīng)用。圖2給出了二疊系烴源巖成油、成氣史及三疊系飛仙關(guān)組原油裂解成氣史。
表1 新疆三塘湖盆地灰?guī)r有機(jī)質(zhì)成油、成氣及川東北地區(qū)灰?guī)r抽提物成氣反應(yīng)的動(dòng)力學(xué)參數(shù)
從圖2可知,二疊系烴源巖在距今約210 Ma進(jìn)入生油、生氣門限,進(jìn)入生氣門限時(shí)間稍晚于進(jìn)入生油門限時(shí)間,主要生油期在距今210~190 Ma,主要生氣期在距今205~185 Ma(見(jiàn)圖2a);飛仙關(guān)組原油裂解主要發(fā)生在距今165~150 Ma(見(jiàn)圖2b),同時(shí)古油藏并未完全裂解,這也是飛仙關(guān)組鮞灘氣藏儲(chǔ)集層中固態(tài)瀝青非常發(fā)育的主要原因。
圖3給出了根據(jù)化學(xué)動(dòng)力學(xué)計(jì)算的川東北地區(qū)二疊系烴源巖和三疊系飛仙關(guān)組古油藏原油在不同階段生氣強(qiáng)度相對(duì)貢獻(xiàn),可以看出 P—T成烴系統(tǒng)中,干酪根生氣階段主要介于195~183.5 Ma,油裂解生氣階段主要介于 170~150 Ma??偵鷼鈴?qiáng)度可達(dá)52×108m3/km2,其中干酪根總生氣強(qiáng)度為9×108m3/km2,原油裂解氣強(qiáng)度總共為43×108m3/km2。氣藏中以油裂解氣為主,其中干酪根生氣和油裂解生氣相對(duì)比例分別為17%和83%。
圖3 川東北地區(qū)二疊系烴源巖與三疊系飛仙關(guān)組古油藏不同時(shí)期生氣強(qiáng)度對(duì)比圖
本次研究從熱模擬實(shí)驗(yàn)出發(fā),并結(jié)合建立的標(biāo)定干酪根成氣、成油及油裂解氣化學(xué)動(dòng)力學(xué)模型,標(biāo)定了各自的化學(xué)動(dòng)力學(xué)參數(shù)。從標(biāo)定結(jié)果的平均活化能來(lái)看,干酪根生油、干酪根生氣及油裂解成氣啟動(dòng)溫度依次升高。針對(duì)川東北P—T成烴系統(tǒng)進(jìn)行生氣史模擬計(jì)算并據(jù)此進(jìn)一步計(jì)算了干酪根成氣和油成氣的相對(duì)貢獻(xiàn)。
川東北地區(qū)P—T成烴系統(tǒng)研究表明,二疊系烴源巖主要生油時(shí)期為距今210~190 Ma(對(duì)應(yīng)早侏羅世),由二疊系烴源巖生成的原油在三疊系飛仙關(guān)組儲(chǔ)集層中裂解生氣主要時(shí)期為距今165~150 Ma,這一結(jié)論與三疊系飛仙關(guān)組于印支晚期—燕山早期(晚三疊世—早侏羅世)聚集下伏二疊系烴源巖生成的液態(tài)烴的認(rèn)識(shí)[9,24,32,40]相吻合。本次研究認(rèn)為原油裂解的主要時(shí)間在距今165~150 Ma(燕山早期)。從川東北地區(qū)埋藏史看,研究區(qū)在晚侏羅世(燕山運(yùn)動(dòng)中期)遭受巨厚地層剝蝕(3 000~4 000 m)[7],之后的沉積并沒(méi)有超過(guò)剝蝕之前的最大埋深,也就是說(shuō)燕山中期運(yùn)動(dòng)之后古油藏的溫度沒(méi)有達(dá)到或超過(guò)所經(jīng)歷的最高溫度,原油再次裂解的熱力學(xué)啟動(dòng)條件沒(méi)有發(fā)生。同時(shí)飛仙關(guān)組上覆嘉陵江組和雷口坡組發(fā)育膏鹽,具有很強(qiáng)的封閉能力,使得早期生成的氣得以保存。
結(jié)合川東北地區(qū)二疊系烴源巖成氣史、成油史及三疊系飛仙關(guān)組古油藏裂解成氣史確定了兩種裂解氣的相對(duì)貢獻(xiàn),其中干酪根生氣和油裂解生氣相對(duì)比例分別為17%和83%,這與研究區(qū)飛仙關(guān)組氣藏以油裂解氣為主的觀點(diǎn)一致。由于本次研究中沒(méi)有進(jìn)行瀝青和分散可溶有機(jī)質(zhì)的熱解動(dòng)力學(xué)研究,沒(méi)有考慮這兩種氣源的貢獻(xiàn)。如果加以研究,也可用本文建立的方法進(jìn)行更多氣源對(duì)氣藏的相對(duì)貢獻(xiàn)評(píng)價(jià)。
[1] 趙文智,汪澤成,張水昌,等.中國(guó)疊合盆地深層海相油氣成藏條件與富集區(qū)帶[J].科學(xué)通報(bào),2007,52(增刊1):9-18.
Zhao Wenzhi,Wang Zecheng,Zhang Shuichang,et al.Analysis on forming conditions ofdeep marine reservoirsand their concentration belts in superimposed basins in China[J].Chinese Science Bulletin,2007,52(Supp.Ⅰ):9-18.
[2] 張水昌,梁狄剛,朱光有,等.中國(guó)海相油氣田形成的地質(zhì)基礎(chǔ)[J].科學(xué)通報(bào),2007,52(增刊1):19-31.
Zhang Shuichang,Liang Digang,Zhu Guangyou,et al.Fundamental geological elements for the occurrence of Chinese marine oil and gas accumulations[J].Chinese Science Bulletin,2007,52(Supp.I):19-31.
[3] 盧雙舫,王振平,趙孟軍,等.從成油成氣期論塔里木盆地的油氣勘探[J].石油學(xué)報(bào),2000,21(4):7-12.
Lu Shuangfang,Wang Zhenping,Zhao Mengjun,et al.Viewing oil and gas exploration in Tarim from the periods of oil and gas formation[J].Acta Petrolei Sinica,2000,21(4):7-12.
[4] 盧雙舫,王朋巖,付廣,等.從天然氣富集主控因素剖析我國(guó)主要含氣盆地天然氣的勘探前景[J].石油學(xué)報(bào),2003,24(3):34-37.
Lu Shuangfang,Wang Pengyan,Fu Guang,et al.Exploration potential analysis of natural gas in the main gas-bearing basins based on factors controlling natural gas enrichment[J].Acta Petrolei Sinica,2003,24(3):34-37.
[5] Waples D W.The kinetics of in-reservoir oil destruction and gas formation:Constraints from experimental and empirical data,and from thermodynamics[J].Organic Geochemistry,2000,31(6):553-575.
[6] 張林,魏國(guó)齊,吳世祥,等.四川盆地震旦系—下古生界瀝青產(chǎn)烴潛力及分布特征[J].石油實(shí)驗(yàn)地質(zhì),2005,27(3):276-280.
Zhang Lin,WeiGuoqi,Wu Shixiang,etal.Distribution characters and hydrocarbon-generating potential of bitumen of Sinian-Lower Paleozoic in Sichuan Basin[J].Petroleum Geology and Experiment,2005,27(3):276-280.
[7] 謝增業(yè),田世澄,魏國(guó)齊,等.川東北飛仙關(guān)組儲(chǔ)層瀝青與古油藏研究[J].天然氣地球科學(xué),2005,16(3):283-288.
Xie Zengye,Tian Shicheng,Wei Guoqi,et al.The study on bitumen and foregone pool of Feixianguan oolitic in Northeast Sichuan Basin[J].NaturalGas Geosciences,2005,16(3):283-288.
[8] Horsfield B,Schenk H J,MillsN,etal.Closed-system programmed-temperature pyrolysis for simulating the conversion of oilto gas in adeep petroleum reservoir[J].Organic Geochemistry,1992,19(1-3):191-204.
[9] Behar F,Kressmann S,Rudkiewicz J L,et al.Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J].Organic Geochemistry,1992,19(1-3):173-189.
[10] Berner U,Faber E,Scheeder G,et al.Primary cracking of algal and land plant kerogens:Kinetic modeling of kerogen and oil cracking[J].Organic Geochemistry,1995,126(3-4):233-245.
[11] Jackson KJ,Burnham A K,Braun R L,et al.Temperature and pressure dependence ofn-hexadecane cracking[J].Organic Geochemistry,1995,23(10):941-953.
[12] Kuo L,Michael G E.Multicomponent oil-cracking kinetics model for modeling preservation and composition of reservoired oil[J].Organic Geochemistry,1994,21(8-9):911-925.
[13] Schenk H J,Di Primio R,Horsfield B.The conversion of oil into gas in petroleum reservoirs,PartⅠ:Comparative kinetic investigation of gas generation from crude oils of lacustrine,marineand fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J].Organic Geochemistry,1997,26(7-8):467-481.
[14] Dieckmann V,Schenk B,Horsfield B. Kinetics ofpetroleum generation and cracking by programmed-temperature closed-system pyrolysis of T oarcian Shales[J].Fuel,1998,77(1-2):23-31.
[15] 趙文智,王兆云,何海清,等.中國(guó)海相碳酸鹽巖烴源巖成氣機(jī)理[J].中國(guó)科學(xué),2005,35(7):638-648.
Zhao Wenzhi,Wang Zhaoyun,He Haiqing,et al.Mechanism for natural gas generation of marine carbonate source rock in China[J].Science in China,2005,35(7):638-648.
[16] 趙宗舉.海相碳酸鹽巖儲(chǔ)集層類型、成藏模式及勘探思路[J].石油勘探與開發(fā),2008,35(6):692-703.
Zhao Zongju. Types,accumulation modelsand exploration concepts of marine carbonate reservoirs[J]. Petroleum Exploration and Development,2008,35(6):692-703.
[17] 秦建中,孟慶強(qiáng),付小東.川東北地區(qū)海相碳酸鹽巖三期成烴成藏過(guò)程[J].石油勘探與開發(fā),2008,35(5):548-556.
Qin Jianzhong, Meng Qingqiang, Fu Xiaodong. Three hydrocarbon generation and accumulation processes of marine carbonate rocks in northeastern Sichuan Basin,China[J].Petroleum Exploration and Development,2008,35(5):548-556.
[18] 劉昭茜,梅廉夫,郭彤樓,等.川東北地區(qū)海相碳酸鹽巖油氣成藏作用及其差異性——以普光、毛壩氣藏為例[J].石油勘探與開發(fā),2009,36(5):552-561.
Liu Zhaoqian,Mei Lianfu,Guo Tonglou,et al.Characteristics and differences of hydrocarbon accumulations in marine carbonate rocks,northeast Sichuan Basin:A case study from Puguang and Maoba gas fields[J].Petroleum Exploration and Development,2009,36(5):552-561.
[19] 趙孟軍,盧雙舫.原油二次裂解氣——天然氣重要的生成途徑[J].地質(zhì)論評(píng),2000,46(6):645-650.
Zhao Mengjun,Lu Shuangfang.Natural gas from secondary cracking of crude oil:An important pattern of gas generation[J].Geological Review,2000,46(6):645-650.
[20] 趙文智,王兆云,張水昌,等.油裂解生氣是海相氣源灶高效成氣的重要途徑[J].科學(xué)通報(bào),2006,51(5):589-595.
Zhao Wenzhi,Wang Zhaoyun,Zhang Shuichang,et al.Oil cracking:An important way for highly efficient generation of gas from marine source rock kitchen[J].Chinese Science Bulletin,2006,51(5):589-595.
[21] 朱光有,趙文智,梁英波,等.中國(guó)疊合盆地深層海相油氣成藏條件與富集區(qū)帶[J].科學(xué)通報(bào),2007,52(增刊1):46-57.
Zhu Guangyou,Zhao Wenzhi,Liang Yingbo,et al.Discussion of gas enrichmentmechanism and natural gas origin in marine sedimentary basin,China[J].Chinese Science Bulletin,2007,52(Supp.Ⅰ):62-76.
[22] 孫瑋,劉樹根,馬永生,等.四川盆地威遠(yuǎn)—資陽(yáng)地區(qū)震旦系油裂解氣判定及成藏過(guò)程定量模擬[J].地質(zhì)學(xué)報(bào),2007,81(8):1153-1159.
Sun Wei,Liu Shugen,Ma Yongsheng,et al.Determination and quantitative simulation of gas pool formation process of Sinian cracked gas in Weiyuan-Ziyang area,Sichuan Basin[J].Acta Geologica Sinica,2007,81(8):1153-1159.
[23] Prinzhofer A,Huc A Y.Genetic and post-genetic molecular and isotopic fractionations in natural gases[J].Chemical Geology,1995,126(3/4):281-290.
[24] 趙文智,汪澤成,王一剛.四川盆地東北部飛仙關(guān)組高效氣藏形成機(jī)理[J].地質(zhì)論評(píng),2006,52(5):708-718.
Zhao Wenzhi,Wang Zecheng,Wang Yigang. Formation mechanism ofhighly effective gas pools in the Feixianguan Formation in the NE Sichuan Basin[J].Geological Review,2006,52(5):708-718.
[25] 張敏,黃光輝,胡國(guó)藝,等.原油裂解氣和干酪根裂解氣的地球化學(xué)研究[A].第十一屆全國(guó)有機(jī)地球化學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C].北京:中國(guó)石油學(xué)會(huì)石油地質(zhì)專業(yè)委員會(huì),2007.393.
Zhang Min,Huang Guanghui,Hu Guoyi,et al.Geochemical research on the natural gas from oil cracking and kerogen cracking[A].Abstract sets of the 11thNational Meeting on Organic Geochemistry in China[C]. Beijing: Petroleum Geology Association,Chinese Petroleum Society,2007.393.
[26] 盧雙舫.有機(jī)質(zhì)成烴動(dòng)力學(xué)理論及其應(yīng)用[M].北京:石油工業(yè)出版社,1996.62-90.
Lu Shuangfang.Kinetics theory of hydrocarbon generation from organic matter and its application[M].Beijing:Petroleum Industry Press,1996.62-90.
[27] Allred V D. Kinetics of oilshale pyrolysis[J].Chemical Engineering Progress,1996,62(8):55-60.
[28] Delvaux D, Martin H,Leplat P,et al. Geochemical characterization ofsedimentary organic matterby means of pyrolysis kinetic parameters[J].Organic Geochemistry,1990,16(1-3):175-187.
[29] 金強(qiáng),錢家麟,黃醒漢.生油巖干酪根熱解動(dòng)力學(xué)研究及其在石油生成量計(jì)算中的應(yīng)用[J].石油學(xué)報(bào),1986,7(3):11-20.
Jin Qiang,Qian Jialin,Huang Xinghan.Study on thermal degradation kinetics ofsource rock kerogen and quantitative estimation ofhydrocarbon transformation[J].ActaPetrolei Sinica,1986,7(3):11-20.
[30] Tissot B P,Welte D H.Petroleum formation and occurrence[M].Berlin:Springer-Verlag,1984.69-198.
[31] Ungerer P.State of the art of research in kinetic modeling of oil formation and expulsion[J].Organic Geochemistry,1990,16(1-3):1-25.
[32] 馬永生,蔡勛育.四川盆地川東北區(qū)二疊系—三疊系天然氣勘探成果與前景展望[J].石油與天然氣地質(zhì),2006,27(6):741-750.
Ma Yongsheng,CaiXunyu. Exploration achievementsand prospects of the Permian Triassic natural gas in northeastern Sichuan Basin[J].Oil&Gas Geology,2006,27(6):741-750.
[33] 楊家靜,王一剛,王蘭生,等.四川盆地東部長(zhǎng)興組—飛仙關(guān)組氣藏地球化學(xué)特征及氣源探討[J].沉積學(xué)報(bào),2002,20(2):349-352.
Yang Jiajing,Wang Yigang,Wang Lansheng,et al.The origin of natural gases and geochemistry characters of Changxing reef and Feixianguan oolitic beach gas reservoirs in eastern Sichuan Basin[J].Acta Sedimentologica Sinica,2002,20(2):349-352.
[34] 陳宗清.四川盆地長(zhǎng)興組生物礁氣藏及天然氣勘探[J].石油勘探與開發(fā),2008,35(2):148-156,163.
Chen Zongqing.Changxing Formation biohermal gas pools and natural gas exploration, Sichuan Basin [J]. Petroleum Exploration and Development,2008,35(2):148-156,163.
[35] 謝增業(yè),魏國(guó)齊,李劍,等.川東北飛仙關(guān)組鮞灘儲(chǔ)層瀝青與天然氣成藏過(guò)程[J].天然氣工業(yè),2004,24(12):17-19.
Xie Zengye,Wei Guoqi,Li Jian,et al.Feixianguan Formation oolitic beach reservoir bitumens and gas reservoiring process in Northeast Sichuan[J].Natural Gas Industry,2004,24(12):17-19.
[36] 馬永生,蔡勛育,李國(guó)雄.四川盆地普光大型氣藏基本特征及成藏富集規(guī)律[J].地質(zhì)學(xué)報(bào),2005,79(6):858-865.
Ma Yongsheng,Cai Xunyu,Li Guoxiong.Basic characteristics and concentration of the Puguang Gas Field in the Sichuan Basin[J].Acta Geologica Sinica,2005,79(6):858-865.
[37] 盧雙舫,薛海濤,鐘寧寧.地史過(guò)程中烴源巖有機(jī)質(zhì)豐度和生烴潛力變化的模擬計(jì)算[J].地質(zhì)論評(píng),2003,49(3):292-297.
LuShuangfang,Xue Haitao,Zhong Ningning. Simulating calculation of the variations of organic matter abundance and hydrocarbon-generating potential during geological processes[J].Geological Review,2003,49(3):292-297.
[38] 王一剛,余曉鋒,楊雨,等.流體包裹體在建立四川盆地古地溫剖面研究中的應(yīng)用[J].地球科學(xué)-中國(guó)地質(zhì)大學(xué)學(xué)報(bào),1998,23(3):285-288.
Wang Yigang,Yu Xiaofeng,Yang Yu,et al.Applications of fluid inclusions in the study of Paleo geotemperature in Sichuan Basin[J]. Earth Science-Journalof China University of Geosciences,1998,23(3):285-288.
[39] 伍大茂,吳乃苓,郜建軍.四川盆地古地溫研究及其地質(zhì)意義[J].石油學(xué)報(bào),1998,19(1):18-23.
Wu Damao,Wu Nailing,Gao Jianjun.Paleogeotemperature in Sichuan Basin and its geological significance[J].Acta Petrolei Sinica,1998,19(1):18-23.
[40] 蔡立國(guó),饒丹,潘文蕾,等.川東北地區(qū)普光氣田成藏模式研究[J].石油實(shí)驗(yàn)地質(zhì),2005,27(5):462-467.
Cai Liguo,Rao Dan,Pan Wenlei,et al.The evolution model of the Puguang Gas Field in Northeast of Sichuan[J].Petroleum Geology&Experiment,2005,27(5):462-467.
Generation history of the two gas-sources of Feixianguan Formation gas-pools in the NE Sichuan Basin and their relative contribution
Wang Min,Lu Shuangfang,Li Jijun,Xue Haitao,Song Jianyang
(Daqing Petroleum Institute,Daqing163318,China)
The natural gas produced in Feixianguan Formation in NE Sichuan Basin is characterized by kerogen cracking and oil cracking.Oil samples were taken from the Permian limestone in Santanghu Basin,Xinjiang,with high organic matter abundance and low maturity,and from the Feixianguan limestone in the NE Sichuan area.Oil and gas generation simulation experiments were designed and carried out to appraise the gas generation history and the relative contribution of the two-type sources.Based on simulation results,the chemical kinetic models involving oil-gas generation were built and the kinetic parameters of each model were demarcated.The oil and gas generation history and the oil cracking history were studied with above mentioned models.The results show that major oil generation period of the Permian source rock is between 210 Ma and 190 Ma,the major gas generation period is between 205 Ma and 185 Ma,and the major gas generation period of oil cracking in Feixianguan Formation is between 165 Ma and 150 Ma.The contributions of gas from kerogen cracking and oil cracking were estimated based on the gas generation history and the source rock characteristics.The contributions of the two cracking gases are 17%and 83%,respectively.
NE Sichuan;Feixianguan Formation;oil cracking gas;chemical kinetics
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)項(xiàng)目(2006CB202307);國(guó)家自然科學(xué)基金項(xiàng)目(40572079);教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃基金項(xiàng)目(NCET-04-0345)
TE122.1
A
1000-0747(2010)02-0167-07
王民(1981-),男,河北石家莊人,大慶石油學(xué)院在讀博士研究生,主要從事油氣地球化學(xué)和成藏研究。地址:黑龍江省大慶市,大慶石油學(xué)院地球科學(xué)學(xué)院,郵政編碼:163318。E-mail:quickking@163.com
2008-06-06
2009-12-14
(編輯 王大銳 繪圖 李秀賢)