郭建卉 閆天聰 劉寒雙 劉麗 楊洪強(qiáng) 范偉國
摘 要 為了探究淹水條件下黃腐酸預(yù)處理對平邑甜茶幼苗生長和氮代謝的調(diào)控作用。通過根施不同濃度黃腐酸(50 mg·L-1、200 mg·L-1、500 mg·L-1、1 000 mg·L-1),研究淹水脅迫下平邑甜茶幼苗根系生長及植株氮代謝相關(guān)的指標(biāo)變化。結(jié)果表明,在淹水環(huán)境中,平邑甜茶幼苗生長受到抑制,根系和葉片中硝態(tài)氮含量、銨態(tài)氮含量、游離氨基酸含量、NR活性及GS活性均受到影響。黃腐酸預(yù)處理的平邑甜茶幼苗提高了淹水環(huán)境下根系和葉片中硝態(tài)氮含量、銨態(tài)氮含量、游離氨基酸含量以及NR活性和GS活性,綜合來看,以黃腐酸濃度500 mg·L-1效果最明顯。黃腐酸具有濃度效應(yīng),表現(xiàn)為低濃度促進(jìn)高濃度抑制。說明外源黃腐酸在一定程度上緩解了淹水脅迫對平邑甜茶幼苗的傷害,能調(diào)控淹水條件下平邑甜茶幼苗氮代謝途徑、促進(jìn)根系生長,保障淹水幼苗根系正常的生長。
關(guān)鍵詞 平邑甜茶;黃腐酸;淹水;氮代謝;根系
適宜的水分是果樹豐產(chǎn)、穩(wěn)產(chǎn)和優(yōu)質(zhì)的前提和基礎(chǔ),由于氣候異變,頻繁降水和極端降水的情況不斷發(fā)生,嚴(yán)重干擾了果樹的正常生理代謝[1]。當(dāng)土壤水分長期處于飽和或淹水狀態(tài)時,植物根系生長環(huán)境形成無氧或者缺氧[2-3],由此引起植株自身的形態(tài)結(jié)構(gòu)、能量代謝、根系吸收等明顯變化。淹水對果樹根系的損害程度很大,會使根活力、根長度、根體積和根表面積等大幅下降[4];還會引起有毒物質(zhì)積累,降低對礦物養(yǎng)分的吸收和運(yùn)輸能力等,從而影響果樹的生長結(jié)果。植物在淹水脅迫下自身會發(fā)生一系列生理生化反應(yīng)[5],施用不同外源物質(zhì)可在一定程度上減緩和防御逆境脅迫。施用萘乙酸鈉、復(fù)硝酚鈉、云酯素3種生長調(diào)節(jié)劑均能不同程度緩解西瓜在淹水逆境中帶來的損傷,促進(jìn)根系生長和提高產(chǎn)量[6]。噴施外源亞精胺提高了淹水環(huán)境中玉米根系的抗氧化和有氧呼吸能力[7],噴施脫落酸(ABA)也可提高小豆根系在淹水條件下抗氧化酶活性,使體內(nèi)的氧自由基維持在較低水平,從而減輕淹水對細(xì)胞膜流動性和穩(wěn)定性的損傷[8]。
黃腐酸是從天然腐殖質(zhì)中提取的一種易溶于水、酸和堿的分子量較小的有機(jī)芳香族類物質(zhì)[9],具有較強(qiáng)的吸附性和化學(xué)活性,可促進(jìn)植物吸收礦質(zhì)元素[10-11]。黃腐酸還可作為一種植物生長調(diào)節(jié)劑[12],能提高根活力,促進(jìn)植物養(yǎng)分吸收,提高抗逆性、調(diào)節(jié)植物體內(nèi)多種酶活性[13]。黃腐酸配合氮肥施用,促進(jìn)玉米對氮素的吸收,提高氮肥利用率[14];鹽堿脅迫下黃腐酸可提高小白菜的光合作用、硝態(tài)氮吸收和氮代謝相關(guān)酶活性[15]。葉面噴施黃腐酸可提高平邑甜茶植株的滲透調(diào)節(jié)物質(zhì)、葉片保水性,增加細(xì)胞穩(wěn)定性等,從而提高平邑甜茶植株的抗旱能力[16]。黃腐酸在植物上的應(yīng)用已有較多研究,但其在果樹特別是針對水分脅迫影響方面的研究報(bào)道還有欠缺。本研究采用根施黃腐酸的方式,探討黃腐酸預(yù)處理對淹水蘋果根系生長及氮代謝的影響,為緩解果園澇害對果樹植株的影響提供理論和實(shí)踐參考。
1 材料與方法
1.1 試驗(yàn)材料
試驗(yàn)于2022年3—7月在山東農(nóng)業(yè)大學(xué)根系與激素實(shí)驗(yàn)室進(jìn)行,供試材料為蘋果砧木平邑甜茶(Malus hupehensis (pamp) Rehd.var pinyiensis jiang)幼苗,沙培培養(yǎng)。經(jīng)過冰箱層積的平邑甜茶種子,出芽后播種于直徑為12 cm、高為? 13 cm的育苗缽中,育苗缽裝有約0.136 m3體積的消毒河沙。每盆4株,幼苗長至3片真葉時,每1周澆1次1/2 Hoagland營養(yǎng)液(配方見表1),其余時間用清水補(bǔ)充,放在溫室中統(tǒng)一管理。待平邑甜茶幼苗長至5~6片真葉時進(jìn)行試驗(yàn)處理。
試驗(yàn)中所用黃腐酸(FA)來源于黃腐酸鉀,黃腐酸鉀(礦物源,固體粉末,黃腐酸≥50%,K2O≥12%),由山東農(nóng)大肥業(yè)科技股份有限公司提供。
1.2 試驗(yàn)設(shè)計(jì)與方法
試驗(yàn)設(shè)置0、50、200、500、1 000 mg·L-1 5個FA濃度處理。處理時,選擇生長一致的5~6片真葉的平邑甜茶幼苗,分別根施不同濃度FA溶液1次,每個育苗缽根施50 mL FA溶液。FA處理10 d后再進(jìn)行淹水試驗(yàn),連續(xù)淹水處理7 d。其中,F(xiàn)A 0 mg·L-1處理的幼苗一部分不進(jìn)行淹水處理作為正常生長對照(CK);另一部分進(jìn)行淹水處理作為淹水對照(0 mg·L-1)。淹水方法為套盆法,保持水面高于沙面,每個處理重復(fù)5次。淹水處理結(jié)束后進(jìn)行取樣和測定各指標(biāo)。
1.3 測定項(xiàng)目及方法
1.3.1 生物量測定 根鮮質(zhì)量和干質(zhì)量用? 1/1 000天平稱量。根在干燥箱中經(jīng)105 ℃殺青30 min,80 ℃烘干至恒量,然后測其干質(zhì)量。
1.3.2 根構(gòu)型參數(shù)與根活力測定 根構(gòu)型參數(shù):參考許阿飛[17]根構(gòu)型測定方法,用Scan Maker i800 Plus根系掃描儀進(jìn)行掃描,WinRhizo根系分析系統(tǒng)軟件分析根總長度、根表面積、根直徑、根體積和根尖數(shù)等各項(xiàng)根構(gòu)型參數(shù)。
根活力:根活力采用氯化三苯基四氮唑(TTC)法測定[18]。用四氮唑還原強(qiáng)度(μg·g-1·h-1)來表示其活性。
1.3.3 酶活性及氮素含量測定 硝酸還原酶(NR)活性用活體法測定[18];谷氨酰胺合成酶(GS)活性測定采用王小純等[19]的方法;硝態(tài)氮含量采用水楊酸法、銨態(tài)氮含量的測定參照魯如坤[20]的方法;游離氨基酸含量測定參照格銳思公司的氨基酸(AA)含量試劑盒進(jìn)行。
1.4 數(shù)據(jù)處理
對試驗(yàn)數(shù)據(jù)采用Excel 2016進(jìn)行圖表制作,利用SPSS 20.0軟件進(jìn)行統(tǒng)計(jì)分析,LSD法進(jìn)行差異顯著性檢驗(yàn)(P<0.05)。表中數(shù)據(jù)為“平均? 值±標(biāo)準(zhǔn)差”。
2 結(jié)果與分析
2.1 黃腐酸對淹水平邑甜茶根生長的影響
2.1.1 黃腐酸對淹水平邑甜茶幼苗地上部和根系表型的影響 淹水脅迫下,F(xiàn)A 0 mg·L-1平邑甜茶幼苗根系發(fā)黑,表明淹水影響根系生長,F(xiàn)A預(yù)處理減輕了淹水脅迫對平邑甜茶幼苗根系的損害,其中以FA 500 mg·L-1處理緩解效果最好(圖1)。同時,高濃度黃腐酸會抑制根系生長,對地上部表型影響不明顯。
2.1.2 黃腐酸對淹水平邑甜茶幼苗根鮮質(zhì)量和干質(zhì)量的影響 由圖2可知,在淹水脅迫下,F(xiàn)A不同濃度處理的平邑甜茶幼苗的根鮮質(zhì)量和干質(zhì)量均有不同程度的下降,F(xiàn)A 500 mg·L-1處理的植株干質(zhì)量和鮮質(zhì)量與正常生長植株的差異不顯著。表明,根施適宜濃度的FA有助于緩解淹水脅迫對平邑甜茶幼苗根系生長的抑制作用。
2.1.3 黃腐酸對淹水平邑甜茶幼苗根構(gòu)型的影響 表2顯示,在淹水7 d后,平邑甜茶幼苗根總長度、根表面積、根體積、根直徑以及根尖數(shù)量等根構(gòu)型參數(shù)均顯著下降,但FA處理(50?? mg·L-1~500 mg·L-1)過的平邑甜茶幼苗的根構(gòu)型各參數(shù)的下降幅度減緩,其中FA 500?? mg·L-1處理的根總長度、根表面積、根體積和根尖數(shù)量等根構(gòu)型參數(shù)的下降幅度最小,而高濃度FA(1 000 mg·L-1)處理的下降幅度最大,并與淹水對照有明顯差異。說明,適宜濃度的FA預(yù)處理可在一定程度上緩解淹水脅迫對平邑甜茶根生長的影響,高濃度FA(1 000 mg·L-1)處理加重了對淹水植株的抑制作用。
2.1.4 黃腐酸對淹水平邑甜茶幼苗根活力的影響 淹水會顯著降低平邑甜茶幼苗的根活力,而對適宜濃度FA(200 mg·L-1和500 mg·L-1)處理過的植株根活力影響不顯著(圖3)。數(shù)據(jù)表明FA預(yù)處理的平邑甜茶植株可在淹水環(huán)境中維持較高的根活力,以此可主動吸收更多養(yǎng)分,緩解淹水對植株的傷害。
2.2 黃腐酸對淹水平邑甜茶幼苗葉片和根系NR與GS活性的影響
由圖4可知,淹水增加了平邑甜茶幼苗根系和葉片中NR與GS活性。適宜濃度FA預(yù)處理可提高平邑甜茶幼苗根系及葉中NR與GS活性,其中FA(200 mg·L-1和500 mg·L-1)處理的提高幅度較大。而FA高濃度處理(1 000 mg·L-1)根與葉中NR活性明顯降低。
2.3 黃腐酸對淹水平邑甜茶幼苗硝態(tài)氮和銨態(tài)氮含量的影響
適宜濃度(500 mg·L-1)FA預(yù)處理可明顯提高平邑甜茶幼苗根及葉中的硝態(tài)氮和根中銨態(tài)氮含量,但對葉中銨態(tài)氮含量影響不明顯;高濃度FA(1 000 mg·L-1)明顯降低了幼苗根及葉中銨態(tài)氮含量(圖5)。這些變化可能與NR活性與GS活性有關(guān)。根施適宜濃度的FA可明顯影響平邑甜茶植株在淹水條件下的氮代謝過程,促進(jìn)淹水逆境中植株對氮的吸收利用。
2.4 黃腐酸對淹水平邑甜茶幼苗游離氨基酸含量的影響
在淹水條件下,平邑甜茶幼苗葉片和根系中游離氨基酸含量升高,適宜濃度FA(500?? mg·L-1)預(yù)處理的平邑甜茶根及葉中游離氨基酸含量提高最明顯(圖6)。在根系中FA濃度為50 mg·L-1、200 mg·L-1、500 mg·L-1的效果顯著,分別較0 mg·L-1提高27.9%、27.6%、32.5%。葉片中FA濃度為500 mg·L-1、1 000 mg·L-1的效果顯著,分別較0 mg·L-1提高8.6%、6.7%。
3 討? 論
淹水脅迫直接影響植株根系的生長發(fā)育[21],浸水土壤中,氧氣不足,根系活動減弱,能量減少[22]。在低氧期間,植物可以通過糖酵解和乙醇發(fā)酵維持自身的能量所需[23],最終導(dǎo)致有毒物質(zhì)積累,進(jìn)而根系細(xì)胞死亡[24-25]。FA有許多活性基團(tuán),可刺激組織細(xì)胞的分裂和增長[26],F(xiàn)A因其分子量小,可直接穿過細(xì)胞膜,在原生質(zhì)體中起作用,促進(jìn)根系生長和養(yǎng)分的吸收[27]。FA還可以提高植物體內(nèi)多種酶活性以及提高植物對微量元素的吸收和轉(zhuǎn)運(yùn),促進(jìn)生長發(fā)育和提高品質(zhì)[28]。
本試驗(yàn)中,F(xiàn)A預(yù)處理的平邑甜茶幼苗在淹水條件下根系干鮮質(zhì)量、根構(gòu)型各參數(shù)及根活力下降幅度明顯減小。FA可促進(jìn)植株生長、提高根活性和改善蘋果根構(gòu)型等[29],Canellas等[30]在野生型番茄上發(fā)現(xiàn)FA可通過生長素的信號轉(zhuǎn)導(dǎo)來促進(jìn)根的伸長生長和側(cè)根生長,王瀟瀟等[31]用IAA合成抑制劑進(jìn)一步證明了FA促進(jìn)水稻根系生長是通過IAA信號轉(zhuǎn)導(dǎo)實(shí)現(xiàn)的。有研究指出,分子量較小的腐殖質(zhì)可以進(jìn)入質(zhì)外體到達(dá)質(zhì)膜[32],通過調(diào)控蛋白質(zhì)、相關(guān)酶活性來影響植物生理代謝和根系結(jié)構(gòu)[33]。Pinton等[34]研究表明,低分子腐殖質(zhì)影響玉米根中的硝酸鹽吸收和質(zhì)膜H+-ATPase活性,施加低分子腐殖質(zhì)可以促進(jìn)玉米幼苗對硝酸鹽的吸收。氮循環(huán)關(guān)鍵酶通過調(diào)節(jié)氮的轉(zhuǎn)化和代謝來進(jìn)一步調(diào)控植物的呼吸作用[35]。低氧脅迫下,植株體內(nèi)的氮代謝途徑改變,進(jìn)行無氧呼吸產(chǎn)生乳酸,使NR活性升高,NR是一種催化NADH依賴性硝酸鹽還原為亞硝酸鹽胞質(zhì)酶,通過從NADH再生NAD,硝酸鹽的減少可能有助于細(xì)胞適應(yīng)低氧脅迫[36]。在淹水條件下,F(xiàn)A處理的植株根系和葉片中硝酸根離子含量提高,可調(diào)控平邑甜茶幼苗氮代謝的途徑,提高植物對淹水環(huán)境的適應(yīng)性。根系硝態(tài)氮積累,可誘導(dǎo)NR活性升高,同時生成更多的銨態(tài)氮,維持細(xì)胞的正常代謝功能,提高了植株對低氧逆境環(huán)境的適應(yīng)能力[37]。外源硝酸根可使淹水甜櫻桃根系中積累更多的硝酸根,誘導(dǎo)NR活性升高,增加根系中銨態(tài)氮含量[38]。本研究中發(fā)現(xiàn),F(xiàn)A預(yù)處理可以提高蘋果根與葉中硝態(tài)氮含量和NR活性,使根系和葉片中銨態(tài)氮含量升高,而植物體為了避免銨態(tài)氮過多造成銨毒,誘導(dǎo)GS活性升高,同時植物體為維持自身正常的生命活動,從而增加體內(nèi)游離氨基酸含量,增強(qiáng)植物的抗逆性。由此看,F(xiàn)A預(yù)處理可促進(jìn)蘋果根系生長,引起根構(gòu)型及其功能的改變,促進(jìn)根系對氮素等養(yǎng)分的選擇吸收和利用,從而減緩淹水環(huán)境中平邑甜茶幼苗的傷害。
4 結(jié)? 論
黃腐酸(FA)預(yù)處理的平邑甜茶幼苗根系干鮮質(zhì)量、根構(gòu)型和根活力在淹水環(huán)境中下降幅度減緩,同時提高了根和葉中NO-3-N、NH+4-N、游離氨基酸含量以及NR與GS活性。其中FA濃度為500 mg·L-1對淹水脅迫下平邑甜茶幼苗生長和氮代謝影響最明顯。
參考文獻(xiàn) Reference:
[1] FUJITA S,NOGUCHI K,TANGE T.Root responses of five Japanese? afforestation species to waterlogging[J].Forests,2020,11(5),552.
[2] DE S C R P,ABELEDO L G,MIRALLES D J.Identifying the critical the critcal period for waterlogging on yield and its components in wheat and barley[J].Plant and Soil,2014,378(1/2):265-277.
[3] 劉文革,閻志紅,王 川,等.西瓜幼苗抗氧化系統(tǒng)對淹水脅迫的響應(yīng)[J].果樹學(xué)報(bào),2006,23(6):860-864.
LIU W G,YAN ZH H,WANG CH,et al.Response of antioxidant defense system in watermelon seedling subjected to waterlogged to stress[J].Journal of Fruit Science,2006,23(6):860-864.
[4] TIRYAKIOGLU M,KARANLIK S,ARSLAN M.Response of bread-wheat seedlings to waterlogging stress[J].Turkish Journal of Agriculture and Forestry,2015,? 39(5):807-816.
[5] 劉周斌,周宇健,楊博智,等.植物抗?jié)承匝芯窟M(jìn)展[J].? 湖北農(nóng)業(yè)科學(xué),2015,54(18):4385-4389.
LIU ZH B,ZHOU Y J,YANG B ZH,et al.Research progress in waterlogging of plant[J].Hubei Agricultural Science,2015,54(18):4385-4389.
[6] 李長根,馬江黎,楊瑞平,等.生長調(diào)節(jié)劑對西瓜淹水脅迫的緩解效果[J].農(nóng)學(xué)學(xué)報(bào),2022,12(10):30-34.
LI CH G,MA J L,YANG R P,et al.Alleviating effect of growth regulators on waterlogging stress of watermelon[J].Journal of Agriculture,2022,12(10):30-34.
[7] 僧珊珊,王 群,張永恩,等.外源亞精胺對淹水脅迫玉米的生理調(diào)控效應(yīng)[J].作物學(xué)報(bào),2012,38(6):1042-1050.
SENG SH? SH,WANG Q,ZHANG Y E,et al.Effects of exogenous spermidine on physiological regulatory of maize after waterlogging stress[J].Acta Agronomica Sinica,2012,38(6):1042-1050.
[8] 項(xiàng)洪濤,李 琬,何 寧,等.外源脫落酸緩解小豆幼苗水分脅迫效應(yīng)研究[J].西南農(nóng)業(yè)學(xué)報(bào),2022,35(1):74-80.
XIANG H T,LI W,HE N, et al. Effects of exogenous abscisic acid on alleviating water stress of adzuki bean seedlings[J].Southwest China Journal of Agricultural Sciences,2022,35(1):74-80.
[9] 陳 臻,侯寶宏,王衛(wèi)雄,等.黃腐酸處理對蘋果樹腐爛病菌的抑制作用及對蘋果樹防御酶活性的影響[J].植物保護(hù),2016,42(3):81-86,103.
CHEN ZH,HOU B H,WANG W X,et al.Inhibition of fulvic acid to Valsa mail and its effect on the activity of defense enzyme in apple tree[J].Plant Protection,2016,? 42(3):81-86,103.
[10] 袁瑞江,姚銀娟,王麗喬,等.生物腐植酸(黃腐酸)及其在農(nóng)業(yè)中的應(yīng)用[J].河北農(nóng)業(yè)科學(xué),2009,13(7):36-38,133.
YUAN R J,YAO Y J,WANG L Q,et al.Biological flvic acid and its application in agriculture[J].Journal of Hebei Agricultural Sciences,2009,13(7):36-38,133.
[11] 楊曉玲,朱京濤,張建文.生化黃腐酸的提取及其理化性質(zhì)的研究[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào) ,2003,25(1):18-20,23.
YANG X L,ZHU J T,ZHANG J W,Study on extraction of BcFA and its physical and chemical characters[J].Journal of Jilin Agricultural University,2003,25(1):18-20,23.
[12] 裴瑞杰,袁天佑,王俊忠,等.施用腐殖酸對夏玉米產(chǎn)量和氮效率的影響[J].中國農(nóng)業(yè)科學(xué),2017,50(11):2189-2198.
PEI R J,YUAN T Y,WANG J ZH,et al.Effects of application of humic acid on yield,nitrogen use efficiency of summer maize[J].Scientia Agricultura Sinica,2017,? 50(11):2189-2198.
[13] 王天立.黃腐酸在農(nóng)業(yè)上的應(yīng)用[J].腐植酸,1992(1):14-36.
WANG T L.Application of fulvic acid in agriculture[J].Fulvic Acid,1992(1):14-36.
[14] 蘆大偉,李青軍,陳署晃,等.黃腐酸與氮肥配施對滴灌玉米產(chǎn)量及氮肥利用率的影響[J].新疆農(nóng)業(yè)科學(xué),2019,? 56(10):1888-1894.
LU D W,LI Q J,CHEN SH H,et al.Effect of combined application of fulvic acid and urea on yield and nitrogen use efficiency of drip irrigation maize[J].Xinjiang Agricultural Sciences,2019,? 56(10):1888-1894.
[15] 龐強(qiáng)強(qiáng),陳日遠(yuǎn),劉厚誠,等.硝酸鹽脅迫下黃腐酸對小白菜生長及氮代謝相關(guān)酶活性的影響[J].浙江農(nóng)業(yè)學(xué)報(bào),2015,27(12):2136-2140.
PANG Q? Q,CHEN? R Y,LIU H CH,et al.Effects of fulvic acid on the growth and activities of nitrogen metabolism enzymes in pakchoi under NO-3? stress[J].Acta Agriculturae Zhejiangensis,2015,27(12):2136-2140.
[16] 李愛梅,張 玲,張 超,等.黃腐酸和甜菜堿預(yù)處理對干旱脅迫下平邑甜茶生理特性及光合的影響[J].西北植物報(bào),2017,37(2):307-314.
LI A M,ZHANG L,ZHANG CH,et al.Effects of fulvic and betaine pretreatment on physiological characteristics and photosynthesis of Malus hupehenis under drought stress[J].Acta Botanica Boreali-Occidentalia Sinica,2017,37(2):307-314.
[17] 許阿飛.復(fù)硝酚鈉和胺鮮酯對蘋果根系和氮素吸收同化的調(diào)控作用[D].山東泰安:山東農(nóng)業(yè)大學(xué),2022.
XU A F.Regulatory effects of compound sodium nitrophenolate and diethyl aminoethyl hexanoate on apple root and nitrogen absorption and assimilation[D].Taian Shandong:Shandong Agricultural University,2022.
[18] 張志良,翟偉菁.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:高等教育出版社,2003,39-41.
ZHANG ZH L,ZHAI W Q.Experimental Guidance of Plant Physiology[M].Beijing:Higher Education Press,2003,39-41.
[19] 王小純,程振云,何建國,等.不同氮素形態(tài)對專用小麥苗期氨同化關(guān)鍵酶活性的影響[J].麥類作物學(xué)報(bào),2008,? 28(5):836-840.
WANG X CH,CHENG ZH Y,HE J G,et al.Effects of nitrogen forms on the activities of key enzymes for NH4+ assimilation at seedling stage of different wheat cultivars with specia-end use[J].Journal of Triticeae Crops,2008,28(5):836-840.
[20] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國農(nóng)業(yè)科技出版社,2000.
LU R SH.Soilagrochemical analysis method[M].Beijing:China Agricultural Science and Technology Press,2000.
[21] 苗婷婷,曹志華,劉俊龍,等.淹水脅迫對2個薄殼山核桃品種苗期生長及葉綠素?zé)晒馓匦缘挠绊慬J].江蘇農(nóng)業(yè)科學(xué),2022,50(16):138-146.
MIAO T T,CAO ZH H,LIU J L,et al.Effects of flooding stress on seedling growth and chlorophyll fluorescence characteristics of two pecan varieties[J].Jiangsu Agricultural Sciences,2022,50(16):138-146.
[22] VAN V H,AKMAN M,JAMAR D C L,et al.Group VII ethylene response factor diversification and regulation in four species from flood-prone environments[J].Plant? Cell & Environment,2014,37(10):2421-2432.
[23] PAN J,SHARIF R,XU X,et al.Mechanisms of waterlogging tolerance in plants:research progress and prospects[J].Frontiers in Plant Science,2021,11:627331.
[24] XU X,WANGH,QI X,et al.Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.) [J].Scientia Horticulturae,2014,179:388-395.
[25] ZHANG P,LYU D,JIA L,et al.Physiological and de novo transcriptome analysis of the fermentation mechanism of cerasus sachalinensis roots in response to short-term waterlogging[J].BMC Genomics,2017,18:649.
[26] 孫 倩.提取腐殖酸及其對土壤環(huán)境和植物生長的影響[D].南京:南京農(nóng)業(yè)大學(xué),2016.
SUN Q.Derived humic acids and its effects on soil environment and growth of plants[D].Nanjing:Nanjing Agricultural University,2016.
[27] PICCOLO A,CELANO G,PIETRAMELLARA G.Effects of? fractions of coal-derivedhumic substances on seed germination and growth of seedlings (Lactuga sativa and Lycopersicum esculentum) [J].Biology and Fertility of Soils,1993,16:11-15.
[28] 盧林綱.黃腐酸及其在農(nóng)業(yè)上的應(yīng)用[J].現(xiàn)代化農(nóng)業(yè),2001(5):9-10.
LU L G.Fulvic acid and its application in agriculture[J].Modern Agriculture,2001(5):9-10.
[29] 曹 琪.三種外源調(diào)節(jié)物質(zhì)對蘋果根系生長及養(yǎng)分吸收功能的影響[D].山東泰安:山東農(nóng)業(yè)大學(xué),2021.
CAO Q.Effects of three exogenous regulatory substances on root growth and nutrient absorption of apple[D].Taian Shandong:Shandong Agricultural University,2021.
[30] CANELLAS L P,DANTAS D J,AGUIAR N O,et al.Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants[J].Annals of Applied Biology,2011,159(2):202-211.
[31] 王瀟瀟,伍 宏,陳思衡,等.黃腐酸對水稻幼苗根系生長的影響及其與生長素的關(guān)系[J].西北植物學(xué)報(bào),2022,? 42(5):811-818.
WANG X X,WU H,CHEN S H,et al.Effect of fulvic acid on root growth of rice seedlings and its relationship with auxin[J].Acta Botanica Boreali-Occidentalia Sinica,2022,42(5):811-818.
[32] VAUGHAN D,MALCOLM R E,ORD B G.Influence of humic substances on biochemical processes in plants[J].Soil Organic Matter and Biological Activity,1985:77-108.
[33] CANELLAS L P,OLIVARES F L,OKOROKOVA-FACANHA A L,et al.Humic acids isolated from earthworm compost enhance root elongation,lateral root emergence,and plasma membrane H+-ATPase activity in maize roots[J].Plant Physiology,2002,130(4):1951-1957.
[34] PINTON R,CESCO S,IACOLETTIG G,et al.Modulation of NO-3 uptake by water-extractable humic substances:involvement of root plasma membrane H+-ATPase[J].Plant and Soil,1999,215:155-161.
[35] 任 軍.水曲柳根系呼吸特性及其對土壤氮素反應(yīng)機(jī)理研究[D].北京:北京林業(yè)大學(xué),2009.
REN J.Characteristic and mechanisms of root respiration of Fraxinus mandushurica Rupr.to soil nitrogen[D].Beijing:Beijing Forestry University,2009.
[36] LIMAMI A M,DIAB H,LOTHIER J.Nitrogen metabolism in plants under low oxygen stress[J].Planta,2014,239:531-541.
[37] 高洪波.根際低氧脅迫下網(wǎng)紋甜瓜幼苗生理代謝的特征及Ca2+,GABA生理調(diào)節(jié)功能[D].南京:南京農(nóng)業(yè)大學(xué),2005.
GAO H B.Effect of root-zone hupoxia stress on physiological metabolism in muskmelon seedlings and Ca2+,GABA physiological regulation function[D].Nanjing:Nanjing Agricultural University,2005.
[38] 郝云紅.淹水條件下外源硝態(tài)氮對甜櫻桃根系碳、氮代謝影響的研究[D].山東泰安:山東農(nóng)業(yè)大學(xué),2009.
HAO Y H.Studies on effect of exogenous NO-3 on carbon and nitrogen metabolism in roots of sweet cherry under waterlogging [D].Taian Shandong:Shandong Agricultural University,2009.
Regulation of? Fulvic Acid on Root Architecture and Nitrogen Metabolism of M.hupehensis Seedlings with Flooding
GUO? Jianhui,YAN Tiancong,LIU Hanshuang,LIU Li,YANG Hongqiang and FAN Weiguo
(College of Horticultural Science and Engineering,Shandong Agricultural University,Taian? Shandong 271000,China)
Abstract To explore the regulatory effect of fulvic acid pretreatment on the growth and nitrogen metabolism of M.hupehensis seedlings under flooding conditions,changes in different indexes,including root growth,nitrate nitrogen content,ammonium nitrogen content,free amino acid content,as well as NR (nitrate reductase) activity and GS (glutamine synthetase) activity in roots and leaves of M.hupehensis seedlings were investigated by applying fulvic acid at different concentrations(50? mg·L-1,200 mg·L-1,500 mg·L-1,1 000 mg·L-1).The results showed that the growth of M.hupehensis seedlings was inhibited,and the nitrate nitrogen content,ammonium nitrogen content,free amino acid content,NR activity and GS activity in roots and leaves were affected.The contents of nitrate nitrogen,ammonium nitrogen,free amino acid,NR activity and GS activity in roots and leaves of M.hupehensis seedlings treated with fulvic acid increased under flooding environment.By contrast,the effect of fulvic acid concentration of 500 mg·L-1 was the most obvious.Fulvic acid exhibited a concentration effect,showing that low concentration of fulvic acid promoted root growth and increased nitrate nitrogen content,ammonium nitrogen content,free amino acid content,NR activity and GS activity in roots and leaves of M.hupehensis seedlings,while high concentration of fulvic acid inhibited the changes.The results indicated that exogenous fulvic acid alleviated the damage of flodding stress on M.hupehensis seedlings to a certain extent,regulated the nitrogen metabolism pathway of M.hupehensis seedlings under flooding conditions,promoted root growth,and ensured the normal growth of flooded seedling roots.
Key words M.hupehensis; Fulvic acid; Flooding; Nitrogen metabolism; Root
Received? 2023-04-19??? Returned 2023-10-09
Foundation item National Natural Science Foundation of China ( No.32172517 ); National Key Research and Development Program ( No.2019YFD1000103 ).
First author GUO Jianhui,female,master student.Research area:physiological ecology of tree root system.E-mail:guojianhui0112@163.com
Corresponding?? author FAN Weiguo,male,associate professor.Research area:fruit tree physiological and ecological.E-mail:fwg9075@163.com
(責(zé)任編輯:史亞歌 Responsible editor:SHI Yage)