亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于近鄰傳播算法的茶園土壤墑情傳感器布局優(yōu)化

        2019-05-11 07:03:00張嫚嫚江朝暉蔣躍林
        關(guān)鍵詞:墑情布局含水率

        張 武,張嫚嫚,洪 汛,江朝暉,蔣躍林

        ?

        基于近鄰傳播算法的茶園土壤墑情傳感器布局優(yōu)化

        張 武1,張嫚嫚1,洪 汛1,江朝暉1※,蔣躍林2

        (1.安徽農(nóng)業(yè)大學(xué)信息與計(jì)算機(jī)學(xué)院,合肥 230036;2.安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,合肥 230036)

        針對(duì)節(jié)水灌溉的土壤墑情傳感器布局問(wèn)題,提出了基于近鄰傳播算法(affinity propagation,AP聚類算法)的優(yōu)化布局策略。策略在保證茶園傳感網(wǎng)絡(luò)全覆蓋的基礎(chǔ)上,實(shí)時(shí)采集試驗(yàn)區(qū)各節(jié)點(diǎn)的土壤墑情數(shù)據(jù),構(gòu)建節(jié)點(diǎn)土壤含水率的相似度矩陣,并迭代計(jì)算各節(jié)點(diǎn)的吸引度和歸屬度值,得出聚類數(shù)和聚類中心。結(jié)果表明,采用AP聚類算法對(duì)試驗(yàn)區(qū)域傳感器進(jìn)行優(yōu)化布局,優(yōu)化了傳感器數(shù)量和位置,使傳感器數(shù)量由25個(gè)減少到2個(gè)。在試驗(yàn)區(qū)隨機(jī)采集土壤相對(duì)含水率,經(jīng)驗(yàn)證,聚類中心節(jié)點(diǎn)的土壤相對(duì)含水率與試驗(yàn)區(qū)平均值相近,相對(duì)偏差近為0.76%,表明聚類中心節(jié)點(diǎn)的土壤墑情數(shù)據(jù)具有代表性。該方法有效降低了數(shù)據(jù)的冗余度,節(jié)約了系統(tǒng)成本。

        墑情;傳感器;聚類算法:優(yōu)化布局;AP

        0 引 言

        農(nóng)業(yè)節(jié)水灌溉系統(tǒng)通過(guò)分布于農(nóng)田的傳感器采集土壤墑情信息,合理的傳感器選擇和優(yōu)化布局對(duì)土壤墑情的準(zhǔn)確獲取起著重要作用[1]。傳感器布局的優(yōu)化問(wèn)題在航空航天領(lǐng)域、結(jié)構(gòu)損傷探測(cè)和機(jī)械故障診斷分析等方面獲得了廣泛應(yīng)用[2-5]。

        目前人們對(duì)于傳感器布局研究的重點(diǎn)集中于布點(diǎn)模型和覆蓋算法,即通過(guò)不同的算法模型,從基站數(shù)量、網(wǎng)絡(luò)連通性以及在有障礙物環(huán)境中的最小覆蓋度等方面開(kāi)展優(yōu)化研究。劉麗萍[6]在布點(diǎn)模型方面研究了隨機(jī)規(guī)則布點(diǎn)模型和泊松分布布點(diǎn)模型,利用臨界傳感器密度來(lái)確保完全覆蓋。在覆蓋算法方面,主要涉及遺傳算法、貪婪策略方法和粒子群算法等。Lin等[7]從傳感器網(wǎng)絡(luò)能量最優(yōu)的角度,運(yùn)用模擬退火算法對(duì)傳感器布局進(jìn)行了優(yōu)化設(shè)計(jì);Wang等[8]針對(duì)有障礙物的傳感區(qū)域,以實(shí)現(xiàn)最小覆蓋為目標(biāo)優(yōu)化了傳感網(wǎng)絡(luò);趙偉霞等[9]研究了土壤含水率的時(shí)間穩(wěn)定性問(wèn)題,分析了將土壤水分傳感器直接布設(shè)在代表平均土壤含水率的點(diǎn)時(shí)可選擇的測(cè)點(diǎn)數(shù)量與灌水均勻系數(shù)和土層深度的關(guān)系;蔣杰等[10]設(shè)計(jì)了一種基于目標(biāo)區(qū)域Voronoi劃分的集中式近似算法和基于最小生成樹(shù)的連通算法;李飚等[11]針對(duì)土壤墑情傳感器布點(diǎn)問(wèn)題提出了一種基于Delaunay三角剖分的傳感器布點(diǎn)方法。

        有關(guān)農(nóng)田土壤墑情傳感器布局的研究主要側(cè)重于網(wǎng)絡(luò)覆蓋的優(yōu)化算法方面,對(duì)于土壤墑情數(shù)據(jù)的冗余度問(wèn)題尚缺少相關(guān)的研究。通常,農(nóng)田土壤的含水率受降雨、地形、土壤特性、植被分布和微立地條件等多種因素影響[12-15],同質(zhì)地土壤在平面和深度上實(shí)際并非完全均質(zhì),大多數(shù)土壤特性均是空間位置的函數(shù),在同質(zhì)地不同位置處存在著差異[16]。在農(nóng)田土壤墑情傳感器的布局優(yōu)化過(guò)程中不僅要實(shí)現(xiàn)傳感網(wǎng)絡(luò)的全覆蓋,還應(yīng)考慮土壤墑情數(shù)據(jù)的相似度和差異性問(wèn)題,以減少數(shù)據(jù)的冗余度為目標(biāo)合理優(yōu)化傳感器布局。

        本文以茶園土壤墑情為研究對(duì)象,研究土壤墑情信息的差異性,在網(wǎng)絡(luò)全覆蓋的基礎(chǔ)上基于近鄰傳播算法(affinity propagation,AP聚類算法)通過(guò)計(jì)算土壤節(jié)點(diǎn)含水率的相似度矩陣實(shí)現(xiàn)墑情數(shù)據(jù)的聚類,優(yōu)化傳感器布局,降低數(shù)據(jù)的冗余度和系統(tǒng)成本。

        1 傳感器布局

        1.1 傳統(tǒng)布局方法

        土壤墑情傳感器一般多采用均勻分布的方式,即將傳感器分別放在農(nóng)田網(wǎng)格(一般為正四邊形)的中心點(diǎn),以保證傳感網(wǎng)絡(luò)的全覆蓋。但這種布局方式存在一定的缺陷,如果傳感器均勻分布的太稀疏,則無(wú)法實(shí)現(xiàn)傳感器網(wǎng)絡(luò)的全覆蓋;相反,如果傳感器分布的過(guò)于密集,則會(huì)使傳感器覆蓋范圍中傳感區(qū)域重疊過(guò)多,導(dǎo)致成本的上升和資源的浪費(fèi)。

        在傳感器布局中,不僅需要滿足傳感器的多種性能約束,如系統(tǒng)能量損耗、覆蓋精度、信號(hào)的完備性等,還需要考慮數(shù)據(jù)的冗余度,因此,傳感器的布局需要結(jié)合數(shù)據(jù)的相似度和差異性進(jìn)行優(yōu)化布局。

        1.2 基于AP布局

        本文在茶園土壤墑情傳感器的布局過(guò)程中,首先在目標(biāo)區(qū)域按照四邊形進(jìn)行布局,即將傳感器布置于各四邊形節(jié)點(diǎn)上,滿足全覆蓋的目標(biāo);其次,基于AP聚類算法構(gòu)建各節(jié)點(diǎn)土壤墑情的相似度矩陣,計(jì)算各節(jié)點(diǎn)的吸引度和歸屬度值,通過(guò)迭代計(jì)算得出目標(biāo)區(qū)域的土壤墑情的聚類中心,以聚類中心為基準(zhǔn),剔除冗余傳感節(jié)點(diǎn),優(yōu)化傳感器布局[17-18]。

        1.2.1 AP聚類算法簡(jiǎn)介

        AP聚類算法是一種基于數(shù)據(jù)點(diǎn)間的“消息傳遞”的聚類算法[19]。該算法不需要先確定聚類的數(shù)目,而是把所有的數(shù)據(jù)點(diǎn)都看成潛在意義上的聚類中心,然后通過(guò)節(jié)點(diǎn)之間的消息傳遞找到最合適的聚類中心。該算法是一種確定性的聚類算法,多次獨(dú)立運(yùn)行的聚類結(jié)果穩(wěn)定,已經(jīng)被應(yīng)用到多個(gè)領(lǐng)域,如圖像識(shí)別、圖像分割,圖像檢索及文本挖掘等,取得了較好的效果[20-22]。

        1.2.2 AP聚類算法基本原理及流程

        設(shè)數(shù)據(jù)樣本集{1,2, …, x},AP聚類算法用負(fù)的歐氏距離表示數(shù)據(jù)點(diǎn)和(共個(gè))之間的相似度(,)。

        個(gè)數(shù)據(jù)點(diǎn)之間構(gòu)成×的相似度矩陣=[(,)]×n,聚類中心由對(duì)角線上元素的數(shù)值(即偏向參數(shù),)決定。值影響聚類結(jié)果,越大聚類數(shù)目越多,值越小聚類數(shù)目越少,一般取對(duì)角線上值的中值[23]。

        數(shù)據(jù)點(diǎn)間通過(guò)消息傳遞的方式搜尋和確定聚類中心,主要傳遞2種類型的消息,即吸引度(responsibility,)和歸屬度(availability,)。(,)表示從點(diǎn)發(fā)送到候選聚類中心的數(shù)值消息,它反映了適合作為的類代表點(diǎn)所積累的證據(jù);(,)表示從候選聚類中心發(fā)送到的數(shù)值消息,反映了選擇作為其類代表點(diǎn)的合適程度所積累的證據(jù)。(,)和(,)越大,則點(diǎn)為聚類中心的可能性越大,并且點(diǎn)隸屬于以點(diǎn)為聚類中心的聚類可能性也越大[24-26]。圖 1為消息的傳遞過(guò)程。

        圖1 消息傳遞過(guò)程

        AP聚類算法依照式(2)和式(3)分別迭代更新吸引度(,)和歸屬度(,)的值。

        其中

        其中

        式中為時(shí)刻;為阻尼系數(shù),取值[0.5, 1],一般取0.9,用于保證算法的收斂[27-29]。(,)的初始值為0。

        AP聚類算法在每次迭代后將)+(,)>0的數(shù)據(jù)點(diǎn)作為簇中心。當(dāng)?shù)螖?shù)超過(guò)設(shè)置閾值時(shí)或者當(dāng)聚類中心連續(xù)多次迭代不發(fā)生改變時(shí)終止迭代。確定所有的聚類中心后,將其余的數(shù)據(jù)點(diǎn)分配到相應(yīng)的類中心[30-31]。具體的算法流程如圖2所示。

        圖2 AP聚類算法流程

        Step2:由式(2)和式(3)計(jì)算樣本點(diǎn)間的吸引度和歸屬度值,即()和(,)。

        Step3:迭代更新()和(,),每次迭代更新后,將)+(,)>0的數(shù)據(jù)對(duì)象選作為簇中心。

        Step4:當(dāng)?shù)螖?shù)超過(guò)最大迭代次數(shù)時(shí)(如maxits為1 000次)或者當(dāng)聚類中心連續(xù)多少次迭代不發(fā)生改變時(shí)終止迭代(如convits為100次),確定類中心及各類的樣本點(diǎn),否則返回Step2,繼續(xù)計(jì)算。

        Step5:將剩余的數(shù)據(jù)點(diǎn)根據(jù)相似度劃分到各個(gè)類當(dāng)中,執(zhí)行完畢,算法結(jié)束。

        2 傳感器優(yōu)化布局試驗(yàn)及結(jié)果分析

        2.1 試 驗(yàn)

        試驗(yàn)場(chǎng)地位于安徽農(nóng)業(yè)大學(xué)國(guó)家高新技術(shù)農(nóng)業(yè)園(117.210°E,31.937°N,海拔29 m),選取約16 000 m2的茶園,橫向約190 m、縱向約84 m。本試驗(yàn)采用無(wú)線傳感網(wǎng)絡(luò)傳輸數(shù)據(jù),經(jīng)測(cè)試無(wú)線傳感網(wǎng)的可靠傳輸距離約40 m,為保證無(wú)線傳感網(wǎng)路的全覆蓋,選擇橫向約38 m、縱向約14 m的間隔布置傳感器,橫向布置5個(gè)傳感器,縱向布置5個(gè)傳感器,共計(jì)25個(gè)傳感器檢測(cè)點(diǎn),各數(shù)據(jù)采集點(diǎn)分別用A1、A2、A3、…、E4、E5進(jìn)行標(biāo)記。傳感器檢測(cè)點(diǎn)分布如圖3所示。

        注:A1-E5為數(shù)據(jù)采集點(diǎn)。

        傳感器選用石家莊雷光電子科技有限公司的SWR-100W土壤墑情傳感器,該傳感器基于頻域反射原理測(cè)量土壤的質(zhì)量含水率。各檢測(cè)點(diǎn)均采集土壤表面之下25 cm土壤墑情數(shù)據(jù)。

        實(shí)時(shí)采集茶園的土壤含水率和相對(duì)含水率2個(gè)參數(shù)。土壤含水率是指土壤中水分與烘干土質(zhì)量的比值,%;土壤相對(duì)含水率為土壤含水率占田間持水量的百分比,%;田間持水量是指毛管懸著水達(dá)到最大時(shí)的土壤含水率。

        2.2 結(jié)果與分析

        2018年7月28日、7月31日和8月3日分別采集了試驗(yàn)區(qū)域25 cm深度的土壤墑情數(shù)據(jù)。7月28日有雷陣雨,28~36 ℃,7月31日晴天,27~35 ℃,8 月3日多云,26~34 ℃。對(duì)采集的數(shù)據(jù)運(yùn)用Kriging最優(yōu)內(nèi)插估值方法繪制試驗(yàn)區(qū)的土壤墑情空間分布如圖4所示。

        圖4 茶園土壤含水率及相對(duì)含水率空間分布

        由圖4可以看出,試驗(yàn)區(qū)土壤含水率分布變化總體呈西南-東北向遞增趨勢(shì),其相對(duì)含水率的最大變化范圍約15%,土壤墑情分布存在一定的差異。試驗(yàn)區(qū)的西邊空間分布呈現(xiàn)平緩均勻的特征,中間區(qū)域出現(xiàn)凸點(diǎn)。

        試驗(yàn)場(chǎng)土壤為下蜀系黃棕壤,土層較厚、質(zhì)地黏重。對(duì)各采集點(diǎn)用環(huán)刀采集25 cm深度的土壤,并用鋁合法進(jìn)測(cè)試土壤的孔隙度,孔隙度平均值為47.37%,標(biāo)準(zhǔn)差1.9%,試驗(yàn)場(chǎng)的土壤性質(zhì)具有較好的均一性。試驗(yàn)茶園的西南方向地勢(shì)較高,東及偏北方向地勢(shì)偏低,約有5°的坡度,場(chǎng)地的中間有一片地勢(shì)低洼的區(qū)域,與空間分布圖中的凸點(diǎn)位置重合,該區(qū)域位于C3和C4采集點(diǎn)附近。對(duì)照?qǐng)D4土壤墑情的空間分布,初步判斷試驗(yàn)區(qū)的土壤墑情分布的差異性主要受場(chǎng)地的地形結(jié)構(gòu)影響。

        在AP聚類計(jì)算過(guò)程中,設(shè)定=0.9,最大迭代次數(shù)為1 000,當(dāng)聚類中心連續(xù)迭代100次不發(fā)生改變時(shí)終止迭代(即convits為100次)。偏向參數(shù)為相似度矩陣對(duì)角線上的中值,7月28日、7月31日和8月3日數(shù)據(jù)值分別為-86.10、-120.63、-102.44。設(shè)置3 d的的倍率值一致,即3、5、10、15、20和25。結(jié)合試驗(yàn)區(qū)域土壤墑情數(shù)據(jù)進(jìn)行AP聚類的迭代計(jì)算,圖5為7月28日土壤含水率和相對(duì)含水率在不同值下的聚類結(jié)果。表 1為3 d不同值的聚類數(shù)和聚類中心分布情況。

        由圖5和表1可知,當(dāng)選取10、15、20和25的聚類參數(shù)時(shí),7月28日的聚類數(shù)為2,不同值聚類中心都是A2、D4采集點(diǎn),聚類結(jié)果具有較好的一致性。同樣,7月31日和8月3日的聚類結(jié)果與7月28日相似,選取10、15、20和25的參數(shù)時(shí)聚類結(jié)果也為2,分別為A1、C4和A2、D5采集點(diǎn),當(dāng)天的聚類結(jié)果也具備較好的一致性??梢?jiàn),選擇10、15、20和25的聚類參數(shù)對(duì)試驗(yàn)區(qū)域的土壤墑情數(shù)據(jù)進(jìn)行聚類,能夠得到穩(wěn)定和一致的結(jié)果,3 d的聚類結(jié)果均為2。因此,通過(guò)AP聚類算法對(duì)試驗(yàn)區(qū)域土壤墑情傳感器進(jìn)行優(yōu)化布置,傳感器數(shù)量可由25個(gè)減少為2個(gè)。

        注:p為AP聚類算法的偏向參數(shù)。下同。

        表1 3 d試驗(yàn)數(shù)據(jù)對(duì)應(yīng)不同p值的聚類結(jié)果

        分別將3 d試驗(yàn)各聚類中心的相對(duì)含水率與類均值進(jìn)行比較,如表2所示。7月28日A1采集點(diǎn)的土壤相對(duì)含水率與類均值相差-1.15%,絕對(duì)值大于A2與類均值的相對(duì)偏差(-0.58%),D4采集點(diǎn)的土壤相對(duì)含水率與類均值相差1.85%,絕對(duì)值小于C4和D5與類均值的相對(duì)偏差(2.09%~2.31%)。另外2 d試驗(yàn)結(jié)果趨勢(shì)一致:A1與A2相比,3 d試驗(yàn)與類均值的相對(duì)偏差(絕對(duì)值)均較小,C4、D4和D5相比,D4與與類均值的相對(duì)偏差(絕對(duì)值)均較小。因此,A2和D4采集點(diǎn)的相對(duì)含水率與試驗(yàn)區(qū)平均值接近,能夠代表試驗(yàn)區(qū)域的土壤墑情,優(yōu)化布局點(diǎn)選擇在A2、D4點(diǎn)布置傳感器較為合理。

        表2 3 d試驗(yàn)的類中心實(shí)測(cè)值與平均相對(duì)含水率

        為驗(yàn)證A2、D4點(diǎn)的代表性,于2019年1月18日采集了這2點(diǎn)的含水率,另外在試驗(yàn)區(qū)另外隨機(jī)選取了13個(gè)位置(如圖6所示)采集數(shù)據(jù),計(jì)算土壤相對(duì)含水率。結(jié)果表明,A2和D4點(diǎn)的土壤相對(duì)含水率分別為27.9%和37%,其平均值為32.45%,13個(gè)采集點(diǎn)土壤相對(duì)含水率的平均值為32.7%,2個(gè)平均值數(shù)值接近,相對(duì)偏差較小,為0.76%。可見(jiàn),在A2、D4采集點(diǎn)布置傳感器能夠代表整個(gè)試驗(yàn)區(qū)域的土壤墑情信息。綜上,本文試驗(yàn)區(qū)茶園選擇分別位于A2和D4的 2個(gè)點(diǎn)布置土壤墑情傳感器,測(cè)定的值能夠反映茶園土壤墑情的整體狀況。

        注:1~13為隨機(jī)布設(shè)的采樣點(diǎn)。

        3 總 結(jié)

        本文提出了基于AP聚類算法的土壤墑情傳感器布局策略,并將其應(yīng)用于茶園土壤墑情的傳感器布局優(yōu)化問(wèn)題。在保證茶園傳感網(wǎng)絡(luò)全覆蓋的基礎(chǔ)上,實(shí)時(shí)采集各節(jié)點(diǎn)的土壤墑情數(shù)據(jù)。采用本文的優(yōu)化方案,試驗(yàn)區(qū)傳感器數(shù)量從25個(gè)減少至2個(gè),顯著降低了系統(tǒng)成本,降低了數(shù)據(jù)的冗余度。為驗(yàn)證結(jié)果,在試驗(yàn)區(qū)隨機(jī)采集了土壤墑情數(shù)據(jù),計(jì)算了土壤平均相對(duì)含水率。經(jīng)與聚類中心的數(shù)據(jù)進(jìn)行比較,平均相對(duì)含水率與聚類中心值接近,相對(duì)偏差為0.76%,表明聚類中心的采集數(shù)據(jù)能夠代表試驗(yàn)區(qū)域的土壤墑情。

        采用的AP聚類算法通用性強(qiáng)、穩(wěn)定可靠、對(duì)初值不敏感,易于與其他算法進(jìn)行融合。雖然本文的研究對(duì)象是茶園,但該方法對(duì)于解決各類農(nóng)業(yè)節(jié)水灌溉系統(tǒng)的傳感器優(yōu)化問(wèn)題可提供有益的借鑒。本文的試驗(yàn)選取3 d時(shí)間進(jìn)行試驗(yàn),聚類結(jié)果具有一致性和穩(wěn)定性,排除了一定的偶然性,但尚有一定的局限性,沒(méi)有考慮不同氣象條件下的聚類情況,后期將選擇不同氣象條件下以及不同特性的農(nóng)田開(kāi)展試驗(yàn),提升研究結(jié)果的通用性。

        [1] Cheng Shunfeng, Michael H Azarian, Michael G Pecht. Sensor system for prognostics and health management[J]. Sensors, 2010, 10(6): 5774-5797.

        [2] 朱喜華,李穎暉,李寧,等. 基于改進(jìn)離散粒子群算法的傳感器布局優(yōu)化設(shè)計(jì)[J]. 電子學(xué)報(bào),2013,41(10):2104-2108. Zhu Xihua, Li Yinhui, Li Ning, et al. Optimal sensor placement design based on improved discrete PSO algorithm[J]. Acta Electronica Sinica, 2013, 41(10): 2104-2108. (in Chinese with English abstract)

        [3] 陳仲生,楊擁民,李聰,等. 基于振動(dòng)傳遞符號(hào)有向圖的齒輪箱嵌入式傳感器優(yōu)化配置模型與算法[J]. 航空動(dòng)力學(xué)報(bào),2009,24(10):2384-2390. Chen Zhongsheng, Yang Yongmin, Li Cong, et al. Model and algorithm of optimal embedded sensor placement for gearboxes based on signed directed graph of vibration progagation[J]. Journal of Aerospace Power, 2009, 24(10): 2384-2390. (in Chinese with English abstract)

        [4] 王宏力,張忠泉,崔祥祥,等. 基于改進(jìn)PSO算法的實(shí)時(shí)故障監(jiān)測(cè)診斷測(cè)試集優(yōu)化[J]. 系統(tǒng)工程與電子技術(shù),2011,33(4):958-962. Wang Hongli, Zhang Zhongquan, Cui Xiangxiang, et al. Test optimization of real-time monitoring and fault diagnosis system based on improved particle swarm optimization[J]. Systems Engineering and Electonics, 2011, 33(4): 958-962. (in Chinese with English abstract)

        [5] 楊帆,蕭德云. 故障檢測(cè)的可靠性描述及傳感器分布優(yōu)化算法[J]. 應(yīng)用科學(xué)學(xué)報(bào),2006,24(2):125-130. Yang Fan, Xiao Deyun. Reliability description of fault detection and optimization algorithm of sensor location[J]. Journal of Applied Sciences, 2006, 24(2): 125-130. (in Chinese with English abstract)

        [6] 劉麗萍. 無(wú)線傳感器網(wǎng)絡(luò)節(jié)能覆蓋[D]. 杭州:浙江大學(xué),2006. Liu Liping. Energy-efficient Coverage in Wireless Sensor Networks[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract)

        [7] Lin Frank Y S, Chiu P L. A simulated annealing algorithm for energy-efficient sensor network design[C]//International Symposium on Modeling & Optimization in Mobile. 2005.

        [8] Wang Y C, Hu C C, Tseng Y C. Efficient placement and dispatch of sensors in a wireless sensor network[J]. IEEE Transactions on Mobile Computing, 2007, 7(2):262-274.

        [9] 趙偉霞, 李久生, 王珍, 等. 滴灌均勻性對(duì)土壤水分傳感器埋設(shè)位置的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(9):123-129. Zhao Weixia, Li Jiusheng, Wang Zhen, et al. Influence of drip irrigation uniformity on buried position of soil moisture sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 123-129.(in Chinese with English abstract)

        [10] 蔣杰,方力,張鶴穎. 無(wú)線傳感器網(wǎng)絡(luò)最小連通覆蓋問(wèn)題求解算法[J]. 軟件學(xué)報(bào) 2006,17(2):175-184. Jiang Jie, Fang Li, Zhang Heying. An algorithm for minimal connected cover set problem in wireless sensor networks. Journal of Software, 2006,17(2):175?184. (in Chinese with English abstract)

        [11] 李飚,魏正英,張育斌,等. 土壤墑情傳感器布點(diǎn)算法研究[J]. 節(jié)水灌溉,2015(2):72-76. Li Biao, Wei Zhengying, Zhang Yubin, et al. Optimal placement algorithm of soil moisture sensors [J]. Water-saving Irrigation, 2015(2):72-76. (in Chinese with English abstract)

        [12] 姚月峰,滿秀玲. 毛烏素沙地不同林齡沙柳表層土壤水封空間異質(zhì)性[J]. 水土保持學(xué)報(bào),2007,21(1):112-115.Yao Yuefeng, Man Xiuling. Spatial Heterogeneity of top soil moisture in different stand age of salix psammophila in Mu US sandy land [J]. Journal of Soil and Water Conservation, 2007, 21(1): 112-115. (in Chinese with English abstract)

        [13] 黃弈龍,陳利頂,傅伯杰,等. 黃土丘陵小流域土壤水分空間格局及其影響因素[J]. 自然資源學(xué)報(bào),2005,20(4):483-492. Huang Yilong, Chen Liding, Fu Bojie, et al. Spatial pattern of soil moisture and its influencing factors in small watershed of loess hilly region [J]. Journal of Natural Resources, 2005, 20(4): 483-492. (in Chinese with English abstract)

        [14] 潘顏霞,王新平,蘇延桂,等. 不同植被類型沙地表層土壤水分變化特征[J]. 水土保持學(xué)報(bào),2007,21(5):107-109. Pan Yanxia, Wang Xinping, Su Yangui, et al. Variability characteristics of surface soil moisture content in sand areas covered by different vegetation types [J]. Journal of Soil and Water Conservation, 2007, 21(5): 107-109. (in Chinese with English abstract)

        [15] 趙永宏,劉賢德,張學(xué)龍,等. 祁連山區(qū)亞高山灌叢土壤含水量的空間分布與月份變化規(guī)律[J]. 自然資源學(xué)報(bào),2016,31(4):672-681. Zhao Yonghong, Liu Xiande, Zhang Xuelong, et al. Spatial distribution and monthly variation of soil water content in subalpine shrubs in Qilian Mountains [J]. Journal of Natural Resources, 2016, 31(4): 672-681. (in Chinese with English abstract)

        [16] 許迪,Schmicl R. 田間土壤特性的空間相關(guān)結(jié)構(gòu)分析及其分布描述[J]. 灌溉排水,1996,15(4):16-20. Xu Di, Schmicl R. Spatial correlation structure analysis and distribution description of field soil properties[J]. Irrigation and Drainage, 1996, 15(4):16-20 (in Chinese with English abstract)

        [17] 劉自豪,張斌,祝寧,等. 基于改進(jìn)AP聚類算法的自學(xué)習(xí)應(yīng)用層DDoS檢測(cè)方法[J]. 計(jì)算機(jī)研究與發(fā)展,2018,55(6):1236-1246.Liu Zihao, Zhang Bin, Zhu Ning, et al. Adaptive app-ADDoS detection method based on improved AP algorithm [J]. Computer research and development, 2018, 55(6): 1236-1246. (in Chinese with English abstract)

        [18] 唐丹,張正軍. 近鄰傳播聚類算法的優(yōu)化[J]. 計(jì)算機(jī)應(yīng)用,2017,37(z1):258-261.Tang Dan, Zhang Zhengjun. New Optimized affinity propagation clustering Algorithms [J]. Computer Applications, 2017, 37 (z1): 258-261. (in Chinese with English abstract)

        [19] Frey B J, Dueck D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.

        [20] 董俊,王鎖萍,熊范綸.可變相似性度量的近鄰傳播聚類[J]. 電子與信息學(xué)報(bào),2010,32(3):509-514. Dong Jun, Wang Suoping, Xiong Fanlun. Affinity Propagation clustering based on variable-similarity measure[J]. Journal of Electronics and Information, 2010, 32(3): 509-514. (in Chinese with English abstract)

        [21] 王開(kāi)軍,張軍英,李丹,等. 自適應(yīng)仿射傳播聚類[J]. 自動(dòng)化學(xué)報(bào),2007,33(12):1242-1246. Wang Kaijun, Zhang Junying, Li Dan, et al. Adaptive affinity propagation clustering [J]. Journal of Automation, 2007, 33(12): 1242-1246. (in Chinese with English abstract)

        [22] Wei Z, Wang Y, He S, et al. A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection[J]. Knowledge-Based Systems, 2017, 116:1-12.

        [23] 孫勁光,趙欣. 一種改進(jìn)近鄰傳播聚類的圖像分割算法[J]. 計(jì)算機(jī)工程與應(yīng)用,2017,53(6):178-182. Sun Jinguang, Zhao Xin. Image segmentation algorithm based on improved affinity propagation clustering.Computer Engineering and Applications, 2017, 53(6):178-182. (in Chinese with English abstract)

        [24] 儲(chǔ)岳中,劉恒,張學(xué)鋒. 基于遷移AP聚類與稀疏表示的遙感圖像分類[J]. 計(jì)算機(jī)工程與設(shè)計(jì),2018,39(2):547-550. Chu Yuezhong, Liu Heng, Zhang Xuefeng. Remote sensing image classification method based on tansfer affinity propagation and sparse representation[J]. Computer Engineering and Design, 2018, 39(2): 547-550. (in Chinese with English abstract)

        [25] 江頡,王卓芳,陳鐵明,等. 自適應(yīng)AP聚類算法及其在入侵檢測(cè)中的應(yīng)用[J]. 通信學(xué)報(bào),2015,36(11):118-126. Jiang Jie, Wang Zhuofang, Chen Tieming, et al.Adaptive AP clustering algorithm and its application on intrusion detection [J]. Journal of Communications, 2015, 36(11): 118-126. (in Chinese with English abstract)

        [26] 趙延龍,滑楠. 基于初始偏向度的AP算法聚類性能優(yōu)化研究[J]. 計(jì)算機(jī)應(yīng)用研究,2018(2):372-374. Zhao Yanlong, Hua Nan. Research on optimization of AP algorithm performance based on initial preference[J]. Computer Application, 2018(2): 372-374. (in Chinese with English abstract)

        [27] 陳瑩. 基于AP聚類算法的圖像分割技術(shù)研究[D]. 吉林:吉林建筑大學(xué),2015. Chen Ying. Research on Image Segmentation Technology Based on AP Clustering Algorithm[D]. Jilin: Jilin University of Architecture, 2015. (in Chinese with English abstract)

        [28] Yang C, Liu S, Bruzzone L, et al. A feature-metric-based affinity propagation technique for feature selection in hyperspectral image classification[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(5): 1152-1156.

        [29] Gao J, Ma Z, Qin Y, et al. Application of affinity propagation clustering algorithm in fault diagnosis of metro vehicle auxiliary inverter[J]. Lecture Notes in Electrical Engineering, 2014, 288:3-9.

        [30] 劉曉勇,付輝. 一種快速AP聚類算法[J]. 山東大學(xué)學(xué)報(bào):工學(xué)版,2011,41(4):20-23. Liu Xiaoyong, Fu Hui. A fast affinity propagation clustering algorithm[J]. Journal of Shandong University: Engineering Edition, 2011, 41(4):20-23. (in Chinese with English abstract)

        [31] 肖宇,于劍. 基于近鄰傳播算法的半監(jiān)督聚類[J]. 軟件學(xué)報(bào),2008,19(11):2803-2813. Xiao Yu, Yu Jian. Semi-supervised clustering based on affinity propagation algorithms[J]. Journal of Software, 2008, 19(11): 2803-2813. (in Chinese with English abstract)

        Layout optimization of soil moisture sensor in tea plantation based on affinity propagation clustering algorithm

        Zhang Wu1, Zhang Manman1, Hong Xun1, Jiang Zhaohui1※, Jiang Yuelin2

        (1.,,230036,; 2.,,230036,)

        Aiming at the layout problem of soil moisture sensors for water-saving irrigation, we proposed an optimal layout strategy of soil moisture sensors based on affinity propagation (AP) clustering algorithm. The soil moisture of tea plantation was as the research object. The tea plantation had 84-m width and 190-m length. Following the conventional method, 25 sensor nodes were evenly arranged in rectangular mode in tea plantation experimental area in order to guarantee full coverage of tea plantation sensor network. Soil moisture data of each sensor node in the test area was collected in real time for 3 days. The optimization of sensors was conducted based on soil water content and relative water content by AP clustering algorithm. Different clustering parameters were selected. The AP clustering algorithm was used to construct similarity matrix of node soil water content, to iteratively calculate the responsibility and availability of each node, and to form the clustering number and clustering center. When the clustering parameters were 10, 15, 20 and 25 times of preference, the AP clustering algorithm was used to calculate the soil moisture data in the experimental area for 3 days, the stable and consistent clustering results were obtained. Results showed that soil water content in the tested plantation presented an increasing trend from southwest to northeast and the largest difference of relative water content was 15%. The change is related to the topography of the tested area. For AP clustering, the maximum iterative times was designed as 1 000. Based on the results, the clustering result in the 3 days was 2. The number of sensors optimized by AP clustering algorithm was reduced from 25 to 2. The class mean of the relative water content of the soil in the experimental area was calculated, and compared with the relative water content of soil in the collection points of the cluster center, and the relative bias between them was less than 5%. The relative water content of the collection points in the cluster center was close to the average value of the experimental area, which indicated that the data collected by the cluster center can represent soil moisture situation in the experimental tea plantation. In order to verify the validity of this method, soil moisture data were collected randomly at 13 locations in the experimental area on January 2019. Results showed that the soil average relative water content of tea plantation in the experimental area based on 13 sampling points was 32.7%, the relative water content of soil in the cluster center based on 2 sensors was respectively 27.9% and 37% with an average in the cluster center of 32.45%. Compared with the average relative moisture in the experimental area, the relative bias was only 0.76%. It means that the AP clustering algorithm can optimize the distribution of soil moisture sensors in the experimental tea plantation. The relative soil moisture collected by the cluster center could reflect the overall situation of soil moisture in the tea plantation as long as using only 2 sensors arranged in the cluster center node determined by the optimization calculation. Thus, the AP clustering algorithm is suggested to use in optimization of the sensor layout, which can reduce the redundancy of data and accordingly realize cost saving in agricultural production system.

        soil moisture; sensors; clustering algorithms; layout optimization; affinity propagation clustering

        2018-09-16

        2019-02-15

        2018年安徽省重點(diǎn)研究和開(kāi)發(fā)計(jì)劃項(xiàng)目(1804a07020108);2017年安徽省科技重大專項(xiàng)計(jì)劃(17030701049);2016年農(nóng)業(yè)部農(nóng)業(yè)物聯(lián)網(wǎng)技術(shù)集成與應(yīng)用重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(2016KL05)

        張武,副教授,博士,主要從事計(jì)算機(jī)控制及農(nóng)業(yè)物聯(lián)網(wǎng)研究。Email:zhangwu@ahau.edu.cn

        江朝暉,教授,博士,主要從事農(nóng)業(yè)信息檢測(cè)與處理研究。Email:jiangzh@ahau.edu.cn

        10.11975/j.issn.1002-6819.2019.06.013

        S126

        A

        1002-6819(2019)-06-0107-07

        張 武,張嫚嫚,洪 汛,江朝暉,蔣躍林. 基于近鄰傳播算法的茶園土壤墑情傳感器布局優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(6):107-113. doi:10.11975/j.issn.1002-6819.2019.06.013 http://www.tcsae.org

        Zhang Wu, Zhang Manman, Hong Xun, Jiang Zhaohui, Jiang Yuelin. Layout optimization of soil moisture sensor in tea plantation based on affinity propagation clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 107-113. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.013 http://www.tcsae.org

        猜你喜歡
        墑情布局含水率
        昆明森林可燃物燃燒機(jī)理研究
        墑情會(huì)商,助力備耕春播
        基于表面能的濕煤顆粒含水率表征方法
        土壤墑情監(jiān)測(cè)的意義與技術(shù)規(guī)范
        弱膨脹土增濕變形量試驗(yàn)及路堤填筑分析
        BP的可再生能源布局
        能源(2017年5期)2017-07-06 09:25:57
        原油含水率在線測(cè)量技術(shù)研究
        電子制作(2016年1期)2016-11-07 08:42:56
        VR布局
        2015 我們這樣布局在探索中尋找突破
        開(kāi)封市土壤墑情監(jiān)測(cè)系統(tǒng)建設(shè)研究
        亚洲中文字幕高清av| 97色伦图片97综合影院久久| 久久亚洲AV无码精品色午夜| 国产精品一区二区久久精品蜜臀 | 欧美jizzhd精品欧美| 日韩一区二区肥| 日韩精品夜色二区91久久久| 国产一区二区三区在线大屁股 | 少妇高潮惨叫正在播放对白| 亚洲AV综合久久九九| 少妇性l交大片免费快色| 伊人久久这里只有精品| 亚洲精品熟女国产| 国产黑丝在线| 黄网站a毛片免费观看久久| 日本最新一区二区三区在线视频| 米奇7777狠狠狠狠视频影院| 成年视频国产免费观看| 国产免费激情小视频在线观看| 亚洲精品一区二区高清| 孕妇特级毛片ww无码内射| 93精91精品国产综合久久香蕉| 国产经典免费视频在线观看 | 亚洲一级无码AV毛片久久| 蜜桃视频羞羞在线观看| 午夜免费啪视频| 亚洲 欧美 唯美 国产 伦 综合| 久久狠狠高潮亚洲精品暴力打| 高清国产亚洲va精品| 国产精品髙潮呻吟久久av| 人人做人人爽人人爱| 国产又色又爽无遮挡免费动态图| 亚洲日本无码一区二区在线观看| 国内精品熟女一区二区| 日韩精品久久中文字幕| 又爽又黄又无遮挡网站动态图| 亚洲国产精品国语在线| 国产高跟丝袜在线诱惑| 国产亚洲人成在线观看| 欧美大肥婆大肥bbbbb| 毛片av在线播放亚洲av网站|