亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        牛LATS2基因啟動子克隆及轉(zhuǎn)錄調(diào)控分析

        2023-12-29 00:00:00張久盤宋雅萍姜超王錦魏大為
        江蘇農(nóng)業(yè)學(xué)報 2023年3期

        摘要: 本研究旨在探究牛LATS2基因組織表達(dá)規(guī)律,利用相對熒光素酶活性數(shù)值確定其啟動子核心區(qū)域并初步鑒定其核心區(qū)域關(guān)鍵轉(zhuǎn)錄因子,以闡明牛LATS2基因的轉(zhuǎn)錄調(diào)控機(jī)制。利用RT-qPCR檢測牛LATS2基因在心、脾、肝、腎、肺、背最長肌、皮下脂肪、皺胃、大腸及睪丸等中的相對表達(dá)量,構(gòu)建LATS2蛋白進(jìn)化樹。克隆LATS2基因5′端非翻譯區(qū)上游1.7 kb序列,利用逐段缺失引物,巢式擴(kuò)增其7個啟動子區(qū)不同截斷體缺失片段(-1 792~+179、-1 475~+179、-1 098~+179、-727~+179、-515~+179、-248~+179和-56~+179),并將不同截斷體構(gòu)建至雙熒光素酶報告載體pGL3-Basic上。重組的LATS2基因啟動子雙熒光素載體分別轉(zhuǎn)染小鼠成肌細(xì)胞(C2C12)和小鼠脂肪細(xì)胞(3T3-L1)細(xì)胞系,鑒定其啟動子核心區(qū)域。進(jìn)一步借助在線軟件JASPAR(http://jaspar.genereg.net/)和Genomatix(http://www.genomatix.de/cgi-bin//mat-inspector)分析啟動子核心區(qū)域序列特征,并預(yù)測關(guān)鍵轉(zhuǎn)錄因子結(jié)合位點(diǎn)。結(jié)果顯示,LATS2基因在肝和背最長肌中表達(dá)量極顯著高于脾(Plt;0.01);LATS2蛋白構(gòu)建的進(jìn)化樹顯示反芻動物單獨(dú)聚為1支,表明LATS2基因在反芻動物進(jìn)化過程中保守性較高;蛋白質(zhì)互作分析篩選出的與LATS2蛋白互作緊密的前10種蛋白質(zhì)均為Hippo信號通路中的關(guān)鍵蛋白質(zhì)。LATS2基因啟動子核心區(qū)域位于-248~-56,預(yù)測其啟動子核心區(qū)域有與肌肉發(fā)育相關(guān)的轉(zhuǎn)錄因子TEAD1、MEF2A、FOSL1、MyoG和Myod1的結(jié)合位點(diǎn),表明LATS2基因在牛肌肉生長發(fā)育中扮演重要角色。以上結(jié)果為探究牛LATS2基因在肌肉生長發(fā)育中轉(zhuǎn)錄調(diào)控機(jī)制奠定基礎(chǔ)。

        關(guān)鍵詞: 牛;LATS2基因;組織表達(dá);啟動子;轉(zhuǎn)錄調(diào)控

        中圖分類號: S823.8+1 文獻(xiàn)標(biāo)識碼: A 文章編號: 1000-4440(2023)03-0753-09

        Promoter cloning and transcriptional regulation of bovine LATS2 gene

        ZHANG Jiu-pan1, SONG Ya-ping2, JIANG Chao2, WANG Jin1, WEI Da-wei2

        (1.Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 750002, China;2.School of Agriculture, Ningxia University, Yinchuan 750021, China)

        Abstract: The purpose of this study was to explore the tissue expression of bovine LATS2 gene, and identify its core promoter region and key transcription factors, so as to clarify the transcriptional regulation mechanism of bovine LATS2 gene. The relative expression levels of bovine LATS2 were detected in heart, spleen, liver, kidney, lung, longissimus dorsi muscle, subcutaneous fat, abomasum, large intestine and testis by RT-qPCR, and the evolutionary tree of LATS2 protein was constructed. The 1.7 kb sequence upstream of the 5′-untranslated region of LATS2 gene was cloned, and the promoter sequence regions of seven segments with -1 792-+179, -1 475-+179, -1 098-+179, -727-+179, -515-+179, -248-+179 and -56-+179 missing segments were amplified, and the dual-luciferase reporter vector pGL3-Basic was constructed respectively. The recombinant LATS2 gene promoter vectors were transfected into C2C12 and 3T3-L1 cell lines, respectively, and the core promoter regions were identified. With the help of online software Genomatix and JASPAR, the sequence characteristics of core promoter were analyzed to predict the binding sites of key transcription factors. The results showed that the expression of bovine LATS2 gene in liver and longissimus dorsi muscle was significantly higher than that in spleen (Plt;0.01). Ruminants were clustered into one branch in the evolutionary tree constructed according to LATS2 protein, which indicated that LATS2 gene was highly conserved in the evolutionary process of ruminants. The top ten proteins closely interacting with LATS2 protein screened by protein interaction analysis were the key proteins in Hippo signaling pathway. The core region of the LATS2 gene promoter was located at -248--56. It was predicted that the core promoter region of bovine LATS2 gene had binding sites of transcription factors TEAD1, MEF2A, FOSL1, MyoG and Myod1 related to muscle development. It showed that LATS2 gene played an important role in the growth and development of bovine muscle. The above results lay a foundation for exploring the transcriptional regulation mechanism of bovine LATS2 gene in muscle growth and development.

        Key words: cattle;LATS2 gene;tissue expression;promoter;transcriptional regulation

        骨骼肌是動物軀體最重要的組成部分,其生長發(fā)育直接影響甚至決定家畜的產(chǎn)肉量,骨骼肌的生物學(xué)特性是衡量家畜潛在經(jīng)濟(jì)性能的標(biāo)準(zhǔn)[1],另外,骨骼肌是動物體動作和能量代謝的主要參與者,在機(jī)體的代謝平衡維持中起十分重要的作用[2]。骨骼肌發(fā)生發(fā)育過程極其復(fù)雜精細(xì),從靜息肌衛(wèi)星細(xì)胞的激活、成肌細(xì)胞的增殖分化,到肌纖維形成的終末階段[3-4],全過程除了受遺傳、環(huán)境及營養(yǎng)水平調(diào)控外,更多取決于基因的控制[5],且細(xì)胞信號分子、轉(zhuǎn)錄因子、非編碼RNA等諸多調(diào)節(jié)因子精準(zhǔn)地參與其中復(fù)雜的網(wǎng)絡(luò)調(diào)控[6-11]。目前,為促進(jìn)骨骼肌的生長發(fā)育以改善肉質(zhì)從而實現(xiàn)肉牛的遺傳改良,基因的功能鑒定和篩選已成為一種熱門且有效的手段。

        哺乳動物中調(diào)節(jié)細(xì)胞生長的Hippo信號通路十分保守,通過關(guān)鍵因子Salvador1(Sav1)、MST1/MST2、Yep等相關(guān)基因及大腫瘤抑制基因1/2(LATS1/LATS2)調(diào)控細(xì)胞的增殖、分化、凋亡以及干細(xì)胞的自我更新,從而實現(xiàn)對器官體積大小的控制[12-13]。LATS2基因作為Hippo信號通路的核心成員之一,與通路中的其他關(guān)鍵因子共同調(diào)控動物體器官的生長發(fā)育,主要表現(xiàn)在影響心臟肌肉的發(fā)育[14-15]。目前,關(guān)于LATS2基因功能研究主要集中在其參與腫瘤細(xì)胞發(fā)生及調(diào)控細(xì)胞增殖的機(jī)理方面[16-18],但LATS2基因?qū)游矬w骨骼肌生長發(fā)育中的調(diào)控有重要作用且研究較少。王利宏等[19]、鮑建軍等[20]發(fā)現(xiàn)LATS2基因多態(tài)性與湖羊肌肉生長發(fā)育有顯著關(guān)聯(lián),同時還發(fā)現(xiàn)YAP1基因在正常表型羊和雙肌臀羊中的表達(dá)存在差異,且LATS1/LATS2基因可與YAP1基因互作抑制肌肉生長發(fā)育[21]。

        此外,我們前期研究發(fā)現(xiàn)LATS1基因在牛背最長肌等多個組織中高表達(dá),且其核心啟動區(qū)結(jié)合了肌肉生長發(fā)育相關(guān)的Myod1和MEF2A轉(zhuǎn)錄因子并調(diào)控其轉(zhuǎn)錄活性,初步闡明了LATS1基因參與牛的肌肉生長發(fā)育轉(zhuǎn)錄調(diào)控機(jī)制[22]。LATS2基因與LATS1基因同屬LATS基因家族,其分子序列及結(jié)構(gòu)相似,因此我們推測LATS2在牛肌肉生長發(fā)育中扮演重要角色,但其轉(zhuǎn)錄機(jī)制不清。鑒于此,本研究擬構(gòu)建LATS2基因在牛不同肌肉組織或器官中的表達(dá)譜,克隆并鑒定其啟動子核心區(qū)域,預(yù)測LATS2基因啟動子核心區(qū)域的關(guān)鍵轉(zhuǎn)錄因子,以期為探究牛LATS2基因在肌肉生長發(fā)育過程中的轉(zhuǎn)錄調(diào)控機(jī)制奠定基礎(chǔ)。

        1 材料與方法

        1.1 試驗樣品

        采集3頭20月齡秦川牛公牛的肝(右葉)、背最長肌、睪丸、肺(中葉)、腎(皮質(zhì))、皮下脂肪、心(心房)、皺胃(胃壁)、大腸(盲腸段)、脾(實質(zhì))和頸部靜脈血樣,迅速置于液氮帶回實驗室備用。

        1.2 主要試劑

        pMD-19T(Simple)載體、PrimeSTAR GXL Premix、基因組DNA提取試劑盒、DH5α感受態(tài)細(xì)胞、DNA凝膠回收試劑盒、限制性內(nèi)切酶KpnⅠ和XhoⅠ、T4 DNA連接酶、RNA提取試劑盒、反轉(zhuǎn)錄及熒光定量試劑均購自寶生物工程(大連)有限公司;去內(nèi)毒質(zhì)粒提取試劑盒購自O(shè)mega Bio-Tek公司;Dual-Luciferase雙熒光素酶報告系統(tǒng)購自普洛麥格(北京)生物技術(shù)有限公司;DMEM培養(yǎng)基、磷酸緩沖鹽溶液(PBS)、OPTI-MEM、Lipofectamine 3000 Reagent脂質(zhì)體轉(zhuǎn)染試劑盒及胎牛血清(FBS)購自賽默飛世爾科技公司;雙熒光檢測試劑盒購自普洛麥格(北京)生物技術(shù)有限公司;pGL3-Basic及pRL-TK載體、小鼠成肌細(xì)胞(C2C12)和小鼠脂肪細(xì)胞(3T3-L1)為本實驗室保存。

        1.3 RT-qPCR檢測

        首先提取不同組織或器官總RNA,并按照反轉(zhuǎn)錄試劑盒說明書將各個RNA進(jìn)行反轉(zhuǎn)錄,檢測cDNA質(zhì)量。利用Primer 5.0軟件設(shè)計RT-qPCR引物,以GAPDH作為內(nèi)參基因(引物見表1),使用7500 Fast Real Time儀器(美國應(yīng)用生物系統(tǒng)公司產(chǎn)品)進(jìn)行定量PCR。反應(yīng)總體系為20.0 μl,其中上/下游引物各0.8 μl(引物濃度為10 μmol/L)、cDNA模板2.0 μl(模板質(zhì)量濃度為50 ng/μl)、Primix Ex TaqⅡ 10.0 μl、ROX Reference DyeⅡ 0.4 μl,剩余用ddH2O補(bǔ)齊。RT-qPCR反應(yīng)程序為:95 ℃預(yù)變性30 s;95 ℃變性5 s,60 ℃退火34 s,循環(huán)40次,生物學(xué)重復(fù)3次,采用2-△△Ct法處理分析相對表達(dá)量數(shù)據(jù)[23],數(shù)據(jù)采用SPSS 20.0軟件進(jìn)行單因素差異性分析。

        1.4 生物信息學(xué)分析

        結(jié)合NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov)及UCSC(https://genome.ucsc.edu/)網(wǎng)站參考?;蚪M信息,確定LATS2基因啟動子區(qū)域。利用Uniprot(https://www.uniprot.org/)和MEGA 5.0(https://www.megasoftware.net/index.php)構(gòu)建出LATS2蛋白進(jìn)化樹,使用ExcertSy ProtParm(https://web.expasy.org/protparam/)在線程序進(jìn)行蛋白質(zhì)序列分析,使用String(http://string-db.org/)預(yù)測與LATS2蛋白互作的蛋白質(zhì)。

        1.5 啟動子克隆及逐段缺失片段擴(kuò)增

        根據(jù)牛LATS2基因啟動子序列信息,設(shè)計其啟動子全長擴(kuò)增引物L(fēng)ATS2-PF/PR(表1),引物長度為1 972 bp,包括-1 792~+179序列。以基因組DNA為模板,參考PrimeSTAR GXL Premix操作手冊進(jìn)行PCR,總體系20.0 μl,其中,4.0 μl dNTP Mixture,10.0 μl 2×PrimeSTAR GXL Buffer,上/下游引物各0.8 μl(濃度為10 μmol/L),1.0 μl PrimeSTAR GXL DNA聚合酶,底物1.0 μl(質(zhì)量濃度為50 ng/μl),2.4 μl ddH2O。PCR擴(kuò)增程序使用3步法:98 ℃ 10 s,60 ℃ 20 s,68 ℃ 15 s,循環(huán)35次。PCR擴(kuò)增產(chǎn)物用1%瓊脂糖凝膠電泳檢測,預(yù)期片段純化回收后與pMD-19T(Simple)載體連接,轉(zhuǎn)化后篩選陽性克隆進(jìn)行測序鑒定。

        根據(jù)測序結(jié)果,設(shè)計5′端逐段缺失片段的上游引物(F1~F7)和1條固定的下游引物(R),在引物5′端添加KpnⅠ和XhoⅠ雙酶切位點(diǎn)(表1),以LATS2基因-1 792~+179序列為模板進(jìn)行缺失片段的PCR擴(kuò)增反應(yīng)(擴(kuò)增體系、程序同上),將擴(kuò)增片段分別連接pMD-19T(Simple)載體進(jìn)行測序鑒定。得到的逐段缺失片段分別命名為:LATS2-P1、LATS2-P2、LATS2-P3、LATS2-P4、LATS2-P5、LATS2-P6和LATS2-P7。

        1.6 雙熒光素報告載體構(gòu)建

        使用內(nèi)切酶KpnⅠ和XhoⅠ將LATS2-P1~LATS2-P7片段和pGL3-Basic載體在37 ℃條件下酶切1 h,酶切完成后進(jìn)行目的片段純化回收。進(jìn)一步將LATS2-P1~LATS2-P7片段分別和pGL3-Basic載體用T4 DNA連接酶(16 ℃條件下)連接1 h。將產(chǎn)物轉(zhuǎn)化至DH5α感受態(tài)細(xì)胞培養(yǎng)后篩選陽性克隆并鑒定,進(jìn)一步使用去內(nèi)毒質(zhì)粒提取試劑盒提取質(zhì)粒,備用。

        1.7 細(xì)胞培養(yǎng)、轉(zhuǎn)染及測定酶活性

        復(fù)蘇C2C12和3T3-L1,培養(yǎng)基為10%胎牛血清(FBS)+90% DMEM培養(yǎng)基,待其生長狀態(tài)良好且密度達(dá)到70%~80%后進(jìn)行傳代培養(yǎng)。傳代生長后選擇形態(tài)良好的細(xì)胞進(jìn)行24孔板鋪板,按照Lipofectamine 3000 Reagent脂質(zhì)體轉(zhuǎn)染試劑盒說明書,分別將構(gòu)建好的雙熒光素報告載體LATS2-pGL3-P1~LATS2-pGL3-P7 800 ng重組質(zhì)粒和20 ng內(nèi)參質(zhì)粒pRL-TK共轉(zhuǎn)染至C2C12和3T3-L1,進(jìn)行3次重復(fù),陰性對照為pGL3-Basic質(zhì)粒。在轉(zhuǎn)染48 h后進(jìn)行細(xì)胞收集,利用雙熒光檢測試劑盒進(jìn)行熒光素酶和海腎熒光素酶活性測定,計算二者的比值,確定LATS2基因的啟動子核心區(qū)域。

        1.8 關(guān)鍵轉(zhuǎn)錄因子預(yù)測

        通過JASPAR(http://jaspar.genereg.net/)和Genomatix(http://www.genomatix.de/cgi-bin//mat-inspector)在線軟件分析啟動子核心區(qū)域序列,預(yù)測閾值設(shè)置為90%以上,選取2個網(wǎng)站預(yù)測結(jié)果的共同部分,篩選LATS2基因的啟動子核心區(qū)域關(guān)鍵的轉(zhuǎn)錄因子結(jié)合位點(diǎn)。

        1.9 數(shù)據(jù)分析

        數(shù)據(jù)結(jié)果以平均值±標(biāo)準(zhǔn)差表示,數(shù)據(jù)顯著性檢驗使用SPSS 18.0 軟件進(jìn)行單因素方差分析(Plt;0.01為差異極顯著; Plt;0.05為差異顯著)。

        2 結(jié)果與分析

        2.1 LATS2基因組織表達(dá)規(guī)律

        RT-qPCR結(jié)果(圖1)顯示,LATS2基因在肝、背最長肌、睪丸、肺、腎、皮下脂肪、心、皺胃、大腸和脾中均檢測出表達(dá)信號,以脾中的表達(dá)量作為對照,該基因在肝和背最長肌中的表達(dá)極顯著地高于脾(Plt;0.01),其次在睪丸中高表達(dá)(Plt;0.05),在肺、腎、皮下脂肪、心、皺胃、大腸和脾中表達(dá)量較低。

        2.2 牛LATS2基因的結(jié)構(gòu)特征及進(jìn)化樹構(gòu)建

        LATS2基因位于第12號染色體,全長51 096 bp,包括9個外顯子和8個內(nèi)含子,共轉(zhuǎn)錄3 048 bp的mRNA序列,可編碼1 015個氨基酸(圖2),LATS2蛋白分子式為C4 882H7 628N1 418O1 425S35,其相對分子質(zhì)量為110 110,等電點(diǎn)(pI)為8.84。

        以LATS2蛋白序列為對象,利用MEGA 5.0軟件構(gòu)建牛、綿羊、山羊、馬、豬、小鼠等物種的系統(tǒng)進(jìn)化樹(圖3)。構(gòu)建出的系統(tǒng)進(jìn)化樹表明LATS2蛋白在牛、綿羊、山羊、馬、豬、小鼠等物種中進(jìn)化較為保守,反芻動物在進(jìn)化過程中單獨(dú)聚為1支,上述結(jié)果表明LATS2具有重要功能且在反芻動物進(jìn)化過程中極度保守。

        2.3 牛LATS2蛋白互作分析

        使用String(http://string-db.org/)預(yù)測與LATS2蛋白互作的蛋白質(zhì),得到圖4所示的蛋白質(zhì)互作網(wǎng)絡(luò)。網(wǎng)絡(luò)中與LATS2蛋白互作緊密的前10種蛋白質(zhì)分別為YAP1、MOB1A、MOB1B、SAV1、AMOTL2、WWC1、WWTR1、AMOT、AMOTL1、NF2,分析其信息,與KEGG收錄的Hippo信號通路成員及Biogrid收錄的與YAP1互作的蛋白質(zhì)進(jìn)行比對后,發(fā)現(xiàn)篩選出的上述蛋白質(zhì)均為Hippo信號通路中的關(guān)鍵蛋白質(zhì)。

        2.4 LATS2基因啟動子核心區(qū)域鑒定

        通過PCR擴(kuò)增到牛LATS2基因啟動子1.7 kb序列,根據(jù)逐段缺失引物進(jìn)行PCR擴(kuò)增,獲得7個逐段缺失的LATS2基因啟動子片段(逐段缺失片段擴(kuò)增電泳見圖5)。進(jìn)一步連接pGL3-Basic載體,構(gòu)建得到了逐段缺失重組質(zhì)粒,將其命名為:pLATS2-1 792~+179、pLATS2-1 475~+179、pLATS2-1 098~+179、pLATS2-727~+179、pLATS2-515~+179、pLATS2-248~+179和pLATS2-56~+179。測序鑒定后,使用Lipofectamine 3000 Reagent脂質(zhì)體分別將pGL3-Basic質(zhì)粒和7個重組質(zhì)粒轉(zhuǎn)染至3T3-L1和C2C12細(xì)胞系,檢測啟動子的活性。相對熒光素酶活性數(shù)值(圖6)顯示,LATS2基因啟動子區(qū)域的1.7 kb序列在C2C12和3T3-L1細(xì)胞系中均有較高的轉(zhuǎn)錄活性。當(dāng)缺失-1 098~-727片段后,pLATS2-727~+179較pLATS2-1 098~+179酶活性在C2C12細(xì)胞系中顯著下降(Plt;0.05);進(jìn)一步缺失啟動子片段-248~-56,發(fā)現(xiàn)pLATS2-56~+179較pLATS2-248~+179酶活性在C2C12和3T3-L1細(xì)胞系中均極顯著下降(Plt;0.01),分別下降了79.4%和75.6%。上述研究結(jié)果表明,LATS2基因啟動子區(qū)域的1.7 kb序列活性較高,具備調(diào)控基因轉(zhuǎn)錄活性的功能;-248~-56為LATS2基因啟動子核心區(qū)域;LATS2基因在C2C12細(xì)胞系的轉(zhuǎn)錄活性高于3T3-L1。

        2.5 啟動子核心區(qū)域的關(guān)鍵轉(zhuǎn)錄因子鑒定

        利用Genomatix和JASPAR軟件對LATS2基因啟動子區(qū)和核心區(qū)域(-248~-56)進(jìn)行分析并對潛在的關(guān)鍵轉(zhuǎn)錄因子進(jìn)行預(yù)測,結(jié)果(圖7)顯示,LATS2基因啟動子核心區(qū)域包含轉(zhuǎn)錄增強(qiáng)因子TEF1(TEAD1)、肌肉細(xì)胞特異性增強(qiáng)因子2A(MEF2A)、FOS樣抗原1(FOSL1)、肌細(xì)胞生成素(Myog)和生肌決定因子(Myod1),初步推測轉(zhuǎn)錄因子TEAD1、MEF2A、FOSL1、Myog和Myod1可能對LATS2基因的轉(zhuǎn)錄活性有重要的調(diào)控作用。

        下劃線為引物序列,方框表示相對應(yīng)的轉(zhuǎn)錄因子結(jié)合位點(diǎn),箭頭指示轉(zhuǎn)錄起始位點(diǎn)。FEAD1:轉(zhuǎn)錄增強(qiáng)因子TEF1;MEF2A:肌肉細(xì)胞特異性增強(qiáng)因子2A;FOSL1:FOS樣抗原1;Myog:肌細(xì)胞生成素;Myod1:生肌決定因子。

        3 討論

        骨骼肌是動物軀體最重要的組成部分,占胴體質(zhì)量的40%左右,其發(fā)育程度直接影響甚至決定家畜的產(chǎn)肉量,LATS2基因?qū)?xì)胞的增殖、凋亡以及骨骼肌的形成有重要的調(diào)控作用,而調(diào)控機(jī)制并不清楚。已有文獻(xiàn)報道,LATS1基因[21]、LATS2基因[19]與湖羊肌肉生長發(fā)育顯著相關(guān)。因此,本試驗開展了牛LATS2基因有關(guān)研究,成功克隆了牛LATS2基因啟動子,檢測了啟動子活性并鑒定到啟動子核心區(qū)域,預(yù)測到該基因啟動子核心區(qū)域中的重要轉(zhuǎn)錄因子,為探究牛LATS2基因在肌肉生長發(fā)育中的轉(zhuǎn)錄調(diào)控機(jī)制奠定基礎(chǔ)。

        本研究中,牛LATS2基因在肝、背最長肌、睪丸、肺、腎、皮下脂肪、心、皺胃、大腸和脾等不同組織或器官中均有表達(dá),在肝中的表達(dá)量最高,背最長肌其次,在心、肺、皮下脂肪、腎、皺胃、大腸和脾等組織或器官中相對表達(dá)量較低。上述研究結(jié)果表明LATS2基因在牛不同組織或器官中的相對表達(dá)量有差異,該基因的高表達(dá)可能影響肝以及肌肉組織的正常發(fā)育,這同LATS2基因表達(dá)量與湖羊肌肉生長發(fā)育顯著相關(guān)[19]的結(jié)果一致。系統(tǒng)進(jìn)化樹結(jié)果顯示,LATS2基因在反芻動物進(jìn)化過程中保守性較高;預(yù)測出的前10種互作蛋白質(zhì)均為Hippo信號通路中重要的轉(zhuǎn)錄調(diào)控因子。Hippo通路的核心是一個激酶級聯(lián)反應(yīng),其中,SAV1和MOB1形成一種復(fù)合體并在細(xì)胞質(zhì)中被磷酸化來調(diào)控LATS1/2表達(dá),待LATS1/2被激活后,其激酶反過來去磷酸化并抑制轉(zhuǎn)錄共激活因子YAP和TAZ。去磷酸化的YAP/TAZ進(jìn)入細(xì)胞核后與TEAD1-4等多種轉(zhuǎn)錄因子發(fā)生互作,從而抑制凋亡的基因表達(dá)并誘導(dǎo)細(xì)胞增殖[24-25]。研究發(fā)現(xiàn)LATS1/2和Mst1/2可通過KIBRA、NF2、RASSF等多種上游信號分子調(diào)控Hippo信號通路的活性,如AMOT等因子通過結(jié)合LATS1/2將YAP/TAZ等因子緊密連接在細(xì)胞質(zhì)中,YAP/TAZ的磷酸化可進(jìn)行細(xì)胞信號調(diào)控。YAP/TAZ和LATS1/2的穩(wěn)定性可通過蛋白質(zhì)泛素化進(jìn)行調(diào)控[26]。綜上,LATS2基因在細(xì)胞信號轉(zhuǎn)導(dǎo)及細(xì)胞增殖分化中起重要作用。

        通過啟動子逐段缺失載體活性檢測,發(fā)現(xiàn)牛LATS2基因啟動子核心區(qū)域位于-248~-56,進(jìn)一步預(yù)測牛LATS2基因啟動子核心區(qū)域有TEAD1、MEF2A、FOSL1、Myog和Myod1等轉(zhuǎn)錄因子結(jié)合位點(diǎn)。研究結(jié)果表明,TEAD1可調(diào)控肌肉特異性基因TNNT2、Mhc、α-actin[27]和COL1A1[28]的表達(dá),在心肌、骨骼肌、平滑肌的發(fā)育方面有至關(guān)重要的調(diào)控作用[27-29]。TEAD1蛋白還可以與Hippo信號通路中YAP蛋白形成蛋白質(zhì)復(fù)合物,從而抑制細(xì)胞增殖、促進(jìn)細(xì)胞凋亡[30]。MEF2A作為肌肉發(fā)生的重要核心因子,對骨骼肌和心肌細(xì)胞的增殖和分化有重要調(diào)控作用[31],同時能夠促進(jìn)生長因子、肌球蛋白重鏈及膠原對損傷骨骼肌的修復(fù)[32];該因子能夠特異性識別并結(jié)合大多數(shù)肌肉基因啟動子中的A/T序列,從而增強(qiáng)相關(guān)基因的表達(dá)[33]。FOSL1是轉(zhuǎn)錄因子AP-1復(fù)合體的組分之一,參與細(xì)胞的增殖和分化,抑制細(xì)胞凋亡,可介導(dǎo)Kras通路調(diào)控細(xì)胞周期蛋白質(zhì),誘導(dǎo)骨骼的發(fā)育[34]。Myog和Myod1作為調(diào)控肌肉細(xì)胞增殖、分化及肌纖維形成的關(guān)鍵基因[35],突變會顯著影響肌肉纖維和肉質(zhì)特性[36]。其中,Myod1對發(fā)育初級階段肌肉的可塑性和再生起關(guān)鍵作用[35],當(dāng)Myod1與PAX7共表達(dá)時,可激活基底膜靜息的肌肉衛(wèi)星細(xì)胞使其增殖[37];Myog通過調(diào)節(jié)肌肉肌酸激酶影響骨骼肌的發(fā)生發(fā)育[38],研究結(jié)果表明,敲除小鼠Myog基因后骨骼肌發(fā)育受損,出生后肌肉會出現(xiàn)萎縮現(xiàn)象[39]。以上研究結(jié)果表明,TEAD1、MEF2A、FOSL1、Myog和Myod1轉(zhuǎn)錄因子在個體生長發(fā)育以及肌肉形成過程中起重要作用,結(jié)合本研究關(guān)于轉(zhuǎn)錄因子結(jié)合位點(diǎn)的預(yù)測,我們可以推斷出上述5種轉(zhuǎn)錄因子對LATS2基因的轉(zhuǎn)錄可能起重要調(diào)控作用。但對于這一推斷將來還需要結(jié)合定點(diǎn)突變、凝膠遷移(EMSA)、染色質(zhì)免疫共沉淀(ChIP)等技術(shù)手段進(jìn)行深入研究。

        4 結(jié)論

        牛LATS2基因啟動子核心區(qū)域位于-248~-56,啟動子核心區(qū)域預(yù)測到TEAD1、MEF2A、FOSL1、Myog和Myod1轉(zhuǎn)錄因子結(jié)合位點(diǎn)。LATS2基因的組織表達(dá)規(guī)律、啟動子核心區(qū)域的轉(zhuǎn)錄因子結(jié)合位點(diǎn)預(yù)測及LATS2蛋白互作分析結(jié)果均表明LATS2基因在牛肌肉生長發(fā)育中扮演重要角色。以上結(jié)果為探究牛LATS2基因在肌肉生長發(fā)育中的轉(zhuǎn)錄調(diào)控機(jī)制奠定基礎(chǔ)。

        參考文獻(xiàn):

        [1] BERRY D P, WALL E, PRYCE J E. Genetics and genomics of reproductive performance in dairy and beef cattle[J]. Animal: An International Journal of Animal Bioscience, 2014, 8(1):105-121.

        [2] HJORTH M, POURTEYMOUR S, GRGENS S W, et al. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cell[J]. Acta Physiologica, 2016, 217(1):45-60.

        [3] FRONTERA W R, OCHALA J. Skeletal muscle: a brief review of structure and function[J]. Calcified Tissue International, 2015, 96(3):183-195.

        [4] TAJBAKHSH S. Skeletal muscle stem cells in developmental versus regenerative myogenesis[J]. Journal of Internal Medicine, 2009, 266(4):372-389.

        [5] BOUKHA A, BONFATTI V, CECCHINATO A, et al. Genetic parameters of carcass and meat quality traits of double muscled Piemontese cattle[J]. Meat Science, 2011, 89(1):84-90.

        [6] WEI D W, FENG L S, ZHANG W Z, et al. Characterization of the promoter region of bovine SIX4: roles of E-box and MyoD in the regulation of basal transcription[J]. Biochemical and Biophysical Research Communications, 2018, 496(1):44-50.

        [7] WEI D W, MA X Y, ZHANG S, et al. Characterization of the promoter region of the bovine SIX1 gene: roles of MyoD, PAX7, CREB and MyoG[J]. Scientific Reports, 2017, 7(1).DOI:10.1038/S41598-017-12787-5.

        [8] WEI D W, GUI L S, RAZA S H A, et al. NRF1 and ZSCAN10 bind to the promoter region of the SIX1 gene and their effects body measurements in Qinchuan cattle[J]. Scientific Reports, 2017, 7(1).DOI:10.1038/S41598-017-08384-1.

        [9] RAZA S H A, KASTER N, KHAN R, et al. The role of microRNAs in muscle tissue development in beef cattle[J]. Genes, 2020, 11(3).DOI:10.3390/genes11030295.

        [10]YUE B L, LI H, LIU M, et al. Characterization of lncRNA-miRNA-mRNA network to reveal potential functional ceRNAs in bovine skeletal muscle[J]. Frontiers in Genetics, 2019, 10.DOI:10.3389/fgene.2019.00091.

        [11]FU Y Y, LI S, TONG H L, et al. WDR13 promotes the differentiation of bovine skeletal muscle-derived satellite cells by affecting PI3K/AKT signaling[J]. Cell Biology International, 2019, 43(7):799-808.

        [12]LIAN L, KIM J, OKAZAWA H, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation[J]. Genes amp; Development, 2010, 24(11):1106-1118.

        [13]ZHANG L, YUE T, JIANG J. Hippo signaling pathway and organ size control[J]. Fly (Austin), 2009, 3(1):68-73.

        [14]YI J, LU L, YANGER K, et al. Large tumor suppressor homologs 1 and 2 regulate mouse liver progenitor cell proliferation and maturation through antagonism of the coactivators YAP and TAZ[J]. Hepatology, 2016, 64(5):1757-1772.

        [15]FURTH N, AYLON Y. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway[J]. Cell Death amp; Differentiation, 2017, 24(9):1488-1501.

        [16]姚春和, 張 榮. miR-372靶向LATS2對結(jié)腸癌SW620細(xì)胞增殖、遷移侵襲的影響[J]. 廣西醫(yī)科大學(xué)學(xué)報, 2021, 38(10):1906-1911.

        [17]MCNEILL H, REGINENSI A. Lats1/2 regulate Yap/Taz to control nephron progenitor epithelialization and inhibit myofibroblast formation[J]. Journal of the American Society of Nephrology, 2017, 28(3):852-861.

        [18]馮瑞軍,鄭遠(yuǎn)航,盛智梅. 外泌體miR-574-5P通過下調(diào)大腫瘤抑制基因2促進(jìn)膠質(zhì)瘤增殖、侵襲和遷移[J]. 中國生物化學(xué)與分子生物學(xué)報, 2021, 38(11):1520-1527.

        [19]王利宏,王慶增,鮑建軍,等. Hippo信號通道中Lats2基因表達(dá)與湖羊肌肉生長發(fā)育的關(guān)系[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2018, 41(3):519-525.

        [20]鮑建軍,蘇 銳,王慶增,等. Smads與Hippo通道中YAP1基因在湖羊肌肉組織中時空表達(dá)研究及關(guān)聯(lián)分析[J]. 中國農(nóng)業(yè)科學(xué), 2016, 49(11) : 2203-2213.

        [21]張玉龍. Hippo信號通道中Lats1基因?qū)蚣∪馍L性狀遺傳調(diào)控的初步研究[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2013.

        [22]WEI D, RAZA S H A, WANG X, et al. Tissue expression analysis, cloning, and characterization of the 5′-regulatory region of the bovine LATS1 gene[J]. Frontiers in Veterinary Science, 2022, 9.DOI:10.3389/fvets.2022.853819.

        [23]LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods, 2001, 25(4):402-408.

        [24]BADOUEL C, MCNEILL H. SnapShot: the hippo signaling pathway[J]. Cell, 2011, 145(3).DOI:10.1016/j.cell.2011.04.009.

        [25]ZHAO B, TUMANENG K, GUAN K L. The hippo pathway in organ size control, tissue regeneration and stem cell self-renewal[J]. Nature Cell Biology, 2011, 13(8):877-883.

        [26]O′HAYRE M, DEGESE M S, GUTKIND J S. Novel insights into G protein and G protein-coupled receptor signaling in cancer[J]. Current Opinion in Cell Biology, 2014, 27:126-135.

        [27]LIU F, WANG X, HU G, et al. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function[J]. The Journal of Biological Chemistry, 2014, 289(6):3308-3316.

        [28]AMBROSINO C, IWATA T, SCAFOGLIO C, et al. TEF-1 and C/EBPβ are major p38α MAPK-regulated transcription factors in proliferating cardiomyocytes[J]. The Biochemical Journal, 2006, 396(1):163-172.

        [29]WEN T, LIU J H, HE X Q, et al. Transcription factor TEAD1 is essential for vascular development by promoting vascular smooth muscle differentiation[J]. Cell Death amp; Differentiation, 2019, 26(12):2790-2806.

        [30]HURASKIN D, EIBER N, REICHEL M, et al. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers[J]. Development, 2016, 143(17):3128-3142.

        [31]NING L, NELSON B R, BEZPROZVANNAYA S, et al. Requirement of MEF2A, C, and D for skeletal muscle regeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11):4109-4114.

        [32]SCHIAFFINO S, DYAR K A, CALABRIA E. Skeletal muscle mass is controlled by the MRF4-MEF2 axis[J]. Current Opinion in Clinical Nutrition and Metabolic Care, 2018, 21(3):164-167.

        [33]TAYLOR M V, HUGHES S M. Mef2 and the skeletal muscle differentiation program[J]. Seminars in Cell amp; Developmental Biology, 2017, 72:33-44.

        [34]VALLEJO A, PERURENA N, GURUCEAGA E, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer[J]. Nature Communications, 2017, 8.DOI:10.1038/ncomms14294.

        [35]ZAMMIT P S. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis[J]. Seminars in Cell amp; Developmental Biology, 2017, 72:19-32.

        [36]COLES C A, WADESON J, LEYTON C P, et al. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle[J]. PLoS One, 2015, 10(4).DOI:10.1371/journal.pone.0124468.

        [37]BUCKINGHAM M, RIGBY P W. Gene regulatory networks and transcriptional mechanisms that control myogenesis[J]. Developmental Cell, 2014, 28(3):225-238.

        [38]XU D Q, WANG L, JIANG Z Z, et al. A new hypoglycemic mechanism of catalpol revealed by enhancing MyoD/MyoG-mediated myogenesis[J]. Life Sciences, 2018, 209:313-323.

        [39]BODINE S C, LATRES E, BAUMHUETER S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy[J]. Science, 2001, 294(5547):1704-1708.

        (責(zé)任編輯:陳海霞)

        收稿日期:2022-06-15

        基金項目:寧夏自然科學(xué)基金項目(2021AAC05007);寧夏重點(diǎn)研發(fā)計劃項目(2020BEB04011);寧夏青年科技人才托舉工程項目(TJGC2019076)

        作者簡介:張久盤(1985-),女,河南商丘人,碩士,助理研究員,研究方向為動物遺傳育種。(E-mail)zhangjiupan@163.com

        通訊作者:魏大為,(E-mail)weidaweiwdw@163.com

        97精品国产高清自在线看超| 日本特黄特色特爽大片| 摸进她的内裤里疯狂揉她动视频| 最新无码国产在线播放| 国产一级一片内射在线| 亚洲国产精品高清在线| 巨大巨粗巨长 黑人长吊| 97超级碰碰人妻中文字幕| 亚洲最稳定资源在线观看| 青青草视频在线观看绿色| 领导边摸边吃奶边做爽在线观看 | 日本乱子人伦在线视频| www.91久久| 亚洲无人区乱码中文字幕动画 | 我的极品小姨在线观看| 亚洲最新无码中文字幕久久| 日日摸日日碰夜夜爽无码| 2021国内精品久久久久精免费| 国产一区二区三区探花| 亚洲乱码国产乱码精华| 精品欧洲av无码一区二区三区| 北岛玲中文字幕人妻系列| 日韩一区三区av在线| 国产美女精品视频线免费播放软件| 无码国产精品一区二区vr老人| 国产强伦姧在线观看| 夜夜高潮夜夜爽免费观看| 久久久久亚洲av成人无码| 精品国产网红福利在线观看| 成人偷拍自拍在线视频| 国产 一二三四五六| 亚洲av无码第一区二区三区| 亚洲精品国产不卡在线观看| 内射爆草少妇精品视频| 在线天堂www中文| 亚洲国产夜色在线观看| 精品国产精品久久一区免费| 在线观看特色大片免费视频| 国产成人www免费人成看片| 99热高清亚洲无码| 91精品国产在热久久|