李永固 金鑒梅 高素蕓 張國偉 劉劍 趙豐
Dye identification and color analysis of azurite satin with a crane roundel pattern in the Qing Dynasty
摘要:紡織品文物是人類歷史文化的珍貴遺產(chǎn),色彩是紡織品文物重要的外在表現(xiàn),而染料是色彩表現(xiàn)的基本內(nèi)核。染料考古通過對文物的色彩、染料進行測試,結合古文獻記載,可獲得染料來源、染色工藝、內(nèi)在審美、商品流通、文物年代和產(chǎn)地等重要歷史信息。本文以中國絲綢博物館館藏清代團鶴紋石青緞為例,運用高效液相色譜—質(zhì)譜聯(lián)用技術檢測絲織品文物上的染料,成功鑒別出紅色染料蘇木,藍色染料靛青,黃色染料姜黃、黃檗、黃荊等,并結合相關歷史文獻對清代紡織品色彩的使用進行了分析。蘇木與姜黃套染可得杏黃色,黃檗、黃荊與靛青套染可得綠色。該文物是在清代紡織品中發(fā)現(xiàn)使用黃荊染料的首個案例。該文物的鑒別結果為清代絲織品染色研究提供了科學依據(jù),結合色彩分析有助于研究清代時期的經(jīng)濟、文化歷史,亦可為清代絲織品色彩復制和文物修復及展示方法提供參考。
關鍵詞:高效液相色譜—質(zhì)譜聯(lián)用技術(HPLC-MS);清代石青緞;染料鑒別;染色方法;靛青;黃荊
中圖分類號:TS101.913; TQ611??? 文獻標志碼:A???文章編號: 10017003(2023)090035
引用頁碼:091105? ? ? ?DOI: 10.3969/j.issn.1001-7003.2023.09.005(篇序)
在公元19世紀中葉合成染料問世之前,所有紡織品的色彩幾乎都來自于天然染料[1]。通過對紡織品文物上的染料品種進行鑒定,可根據(jù)特征成分推測染料的確切來源,并作為該時期的經(jīng)濟和文化歷史的科學證據(jù)[2],有助于文物保護工作者合理保存和展示紡織品文物。目前可用于檢測和鑒別天然染料的技術主要有光纖反射光譜(FORS)[3]、三維熒光光譜(3D-FS)[4]、表面增強拉曼光譜(SERS)[5]和高效液相色譜—質(zhì)譜聯(lián)用技術(HPLC-MS)等[6]。FORS、3D-FS獲取信息量少,且3D-FS無法檢測沒有熒光特征的染料。SERS不能分離混合染料,部分染料信息可能被湮沒。而HPLC-MS能夠?qū)⑷玖戏蛛x和質(zhì)譜檢測相結合。Zhang等[7]通過使用結合二極管陣列檢測器的HPLC-PDA-MS技術分析了來源于新疆博物館收藏的紡織品碎片,成功鑒別出文物中的木犀草、茜草及靛青等染料;Witkowski等[8]通過HPLC-MS鑒別了公元14—15世紀波蘭Gdańsk圣瑪麗亞教堂收藏的禮拜法袍中的染料,并根據(jù)靛紅和靛藍的比值區(qū)分了木藍和菘藍;Dyer等[9]通過HPLC-MS在公元前3世紀的文物顏料中鑒別出了紫膠蟲和單寧染料,并推測了該文物的染料來源;Calà等[10]通過
HPLC-MS/MS成功鑒別了文物中的地衣染料品種,從而可通過地衣染料的分布判斷古代工藝品產(chǎn)地。由此可見,HPLC-MS在染料科技考古領域的地位愈加突出。
中國天然染料的應用技術水平在明清時期發(fā)展至頂峰[11],色彩也日趨豐富多樣。如圖1所示,中國絲綢博物館館藏清代團鶴紋石青緞(No.0302)以石青素緞為地,圖案以素雅的團鶴紋為主,折枝、如意紋中有黃色、粉色、橘色和綠色等作為點綴,一定程度地代表了清代獨特的裝飾風格。本文使用HPLC-MS技術對該文物中的染料進行分析和鑒別,并分析清代絲織品的色彩及染色方法。
1 實 驗
1.1 化學試劑
HPLC級乙腈和甲醇(德國默克公司),LC-MS級甲酸(美國賽默飛世爾科技公司),HPLC級吡啶(上海安譜實驗科技股份有限公司),98%草酸(美國阿克洛斯有機試劑公司)。18.2 MΩ超純水由Millipore reference純水儀(法國密理博公司)系統(tǒng)制備,高純級蘇木素、姜黃素(≥90%)、異葒草素(≥98%)、木犀草素(≥98%)、鹽酸小檗堿(≥98%)、鹽酸巴馬?。ā?8%)、靛藍(>95%)、靛玉紅(≥95%)(上海阿拉丁生化科技股份有限公司),蘇木、黃檗(水色染坊),靛青(溫州采成藍夾纈博物館),黃荊、姜黃(中國絲綢博物館染草園)。
1.2 樣品制備
取文物紗線0.1~0.5 mg放入離心管,使用V吡啶︰V水︰V草酸=95︰95︰10混合溶液萃取紗線中的染料,于85 ℃恒溫萃取30 min。使用氮氣干燥后,將V甲醇︰V水=1︰1混合溶液加入離心管,溶解萃取物,離心,取上清液30 μL至進樣瓶,進樣。
1.3 儀器設備
本實驗采用HPLC-MS法分析清代絲織品上的染料。其中液相色譜系統(tǒng)由二元高壓梯度泵、二極管陣列檢測器和自動進樣器組成LC20AD(日本島津公司),質(zhì)譜檢測器為線性離子阱質(zhì)譜儀LTQ-XL(美國賽默飛世爾科技公司),采用C18反相色譜柱Luna C18(美國菲羅門公司)進行染料色素分離。高效液相色譜洗脫液A為0.1%甲酸水溶液,B為01%甲酸乙腈溶液,流速為0.25 mL/min。質(zhì)譜數(shù)據(jù)采集和處理由Xcalibur 2.1軟件完成,質(zhì)荷比范圍m/z 100~1 000。質(zhì)譜參數(shù)如下:離子噴霧電壓分別為3 kV(正離子模式)和25 kV(負離子模式);毛細管溫度350 ℃;氮氣用作鞘氣和輔氣,壓力分別為241.32 kPa和103.42 kPa;毛細管電壓分別為35 V(正離子模式)和-40 V(負離子模式)。多級譜圖MSn采集利用DDA程序進行碰撞誘導解離,相關參數(shù)見文獻[12]。
2 結果與分析
2.1 紅色染料
圖2是鶴頂橘色繡線在檢測波長350 nm下的高效液相色譜圖,在保留時間10.64 min時檢測出一個明顯的色譜峰2,色譜峰2的紫外—可見光譜如圖3所示,最大吸收波長分別為258、307 nm和338 nm。色譜峰2對應的質(zhì)譜如圖4所示,負離子模式下的準分子離子峰[M-H]-m/z 243。色譜峰2的二級質(zhì)譜的碎片離子主要有m/z 171、215、199和225等,因此該物質(zhì)為蘇木素的降解產(chǎn)物尿石素C[13],分子結構如圖5所示。圖6是450 nm檢測波長下橘色紗線染料樣品的高效液相色譜圖,該圖中未發(fā)現(xiàn)蘇木素,但存在一個微弱的色譜峰1,對應的質(zhì)譜如圖7所示,負離子模式下的準分子離子峰[M-H]-m/z 283,推測為氧化蘇木素。這是因為蘇木素在空氣中極易被氧化,甚至在制成染料時就已經(jīng)變成了氧化蘇木素[14],蘇木素的氧化過程如圖8所示。以上兩種化合物是蘇木的特征成分,因此證明該橘色紗線中存在蘇木染料。
蘇木,又名蘇枋或蘇方木,原產(chǎn)于東南亞和中國嶺南一帶,多以木質(zhì)芯材煎水作為紅色染料,最早見于西晉的《南方草木狀》[15]:“蘇枋……南人以染絳。”蘇木在絲、毛、棉織物上都有較好的上染性能,蘇木在明清時期,多作為各種間色如紅棕色、紫色及橙色調(diào)的套染使用,清乾隆朝織染局染作銷算檔案中記載,蘇木與黃櫨、槐子、明礬、黑礬以不同比例搭配可以染醬色和古銅色[15]。安徽省圖書館藏《布經(jīng)》中記載,蘇木與川倍、白礬、青礬等以不同比例搭配可以染棕色、紫檀、鐵色、秋色等[16]。相較茜草可以通過與不同媒染劑獲得更豐富的色相,相較紅花染色工藝流程更加簡單,染材也更價廉易得,一直是應用十分廣泛的紅色染料。
2.2 黃色染料
圖9為鶴頂橘色紗線染料萃取液在檢測波長450 nm下的高效液相色譜。橘色紗線的染料在450 nm下的高效液相色譜圖中存在區(qū)別于蘇木素和Type C的三個色譜峰,在負離子模式下的準分子離子峰分別為[M-H]- m/z 307、337和367,如圖10、圖11和圖12所示;它們的紫外—可見吸收光譜的最大吸收波長如表1所示。推測三種化合物分別為雙去甲氧基姜黃素、去甲氧基姜黃素和姜黃素[17],分子結構如圖13所示,因此該橘色紗線中存在姜黃。
姜黃是東南亞、中南半島和中國南部使用廣泛的黃色染料,其主要應用部位為根狀莖,富含姜黃素(C21H20O6),可染鮮艷明亮的金黃色,但耐日曬色牢度稍差,因此多和其他黃色染料共同使用,在清代染色中一般也用作套染橙色等間色。《布經(jīng)》記載了東南地區(qū)染匠用姜黃與蘇木套染棉布的工藝,色名為杏黃,與本次檢測結果相對應[18]。
圖14為淺綠色紗線的染料萃取液在檢測波長350 nm下的高效液相色譜圖,存在一個明顯的色譜峰6,其紫外—可見光譜的最大吸收波長分別為226、264、346 nm和426 nm(圖15)。另有一個微弱的色譜峰7,其紫外—可見光譜的最大吸收波長為265、346 nm和426 nm(圖16)。由圖17、圖18可見,二者的準分子離子峰[M+H]+分別為m/z 336、352,結合保留時間推測為小檗堿和巴馬?。?9],其分子結構如圖19所示。此外,根據(jù)色譜峰的信號強度可知小檗堿的相對含量多于巴馬汀,確定該染料來源于川黃檗[20]。
黃檗,別名黃柏、黃檗木,廣泛分布于東北、華中、華東、華南及陜甘寧等地區(qū),中國常用的品種包括川黃檗和關黃檗。黃檗除了可染紡織品之外,還常用于染紙箋,其中富含的小檗堿有防蟲之效。其樹皮經(jīng)過煎煮以后,可以直接染絲帛為黃色,明清時期文獻記載,染葵黃雖使用了明礬做媒染劑,但媒染前后的色相差別不大,不同配比的黃檗與靛青套染可得豆綠、水綠和砂綠等[16],推測該文物的綠色為三者之一。
如圖20所示,深綠色紗線的染料萃取液在350 nm下的色譜圖中有3個信號較強的色譜峰,色譜峰8、9、10分別與[M-H]- m/z 447、475和461的EIC圖相對應(圖21—圖23)。三種化合物紫外—可見吸收光譜的最大吸收波長和二級質(zhì)譜如表2所示,推測色譜峰8和10對應的化合物分別是異葒草素和木犀草素—O—葡萄糖苷,是黃荊的特征色素成分[21],其結構如圖24所示。峰9代表一種未知化合物,根據(jù)紫外光譜的最大吸收波長推測該成分也是黃酮類化合物。
黃荊主要產(chǎn)自長江以南各省,北達秦嶺淮河。非洲東部、馬達加斯加、亞洲東南部及南美洲的玻利維亞也有分布。莖葉可做染料,公元6—10世紀的敦煌洞窟紡織品中檢測并鑒別出了黃荊,本文也是首次在清代絲織品中檢測到黃荊的案例?!洞笤獨至Y工物記》中有記載荊葉可用來做毛氈染色[22]。明代的《多能鄙事》《居家必用事類全集》中有記載將荊葉與白礬、皂礬一起染“荊褐”[23],但在清代鮮有文獻記載。
2.3 藍色染料
圖25為藍色、淺綠色和深綠色三種紗線在檢測波長600 nm下的高效液相色譜,三者具有相同的保留時間,說明三個色譜峰代表的物質(zhì)相同。圖26為色譜峰11的紫外—可見吸收光譜,該物質(zhì)的最大吸收波長為290、362 nm和546 nm。由于靛藍和靛玉紅互為同分異構,二者的質(zhì)譜數(shù)據(jù)相同,其質(zhì)譜如圖27所示,因此僅通過質(zhì)譜圖無法對二者區(qū)分,可根據(jù)紫外—可見光譜的最大吸收波長推測色譜峰11、12和13表示的化合物均為靛玉紅[19],靛玉紅與靛藍的分子結構如
圖28所示,說明該文物紗線中均存在藍色染料靛青。但在該樣品中并未檢測到靛藍,分析認為是因為文物取樣量較少,且靛藍難溶于甲醇的水溶液,靛藍未被成功萃取。而靛玉紅作為靛青染料的特征成分,也可作為以上樣品中存在靛青染料的有力證明。
天然的藍色染料可稱為靛青,主要從含靛植物中獲得[24]。中國歷史上使用的含靛植物主要有4種,分別為蓼藍、菘藍、馬藍和木藍。早在周朝就有關于藍草種植的記載,清代時這4種藍草在國內(nèi)都有種植[25]。靛青染料上染纖維的主要色素成分只有靛藍和靛玉紅,因此難以準確判斷文物中靛青染料的植物來源。
范魯?shù)さ龋?9]曾報道清代明黃色團龍紋實地紗盤金繡龍袍中包括紅、金黃、明黃、豆綠、官綠、藍和天青等色彩,與團鶴紋石青緞的色系相似。在該龍袍中檢測出了植物染料蘇木、紅花、槐米、黃檗、黃櫨和靛青,其中黃櫨主要多見于華北等高海拔地區(qū),因此推測該龍袍很可能是京內(nèi)織染局制作;而本文鑒別出的黃荊和姜黃的主要分布地區(qū)分別為江南和華南一帶,因此推測該件團鶴紋石青緞可能產(chǎn)于江南或華南等地。以上也可證明,染料科技考古能為紡織品文物產(chǎn)地的判斷提供一定的科學依據(jù)。
3 結 論
清代紡織品色彩豐富,本文以中國絲綢博物館館藏團鶴紋石青緞為例,通過HPLC-MS技術,對該文物4種顏色繡線上的染料進行分析和鑒別。該文物中藍色紗線為藍色染料靛青染色,橘色紗線為紅色染料蘇木與黃色染料姜黃套染,淺綠色和深綠色紗線為靛青分別與黃色染料黃檗、黃荊套染。其中黃荊在清代紡織品文物中較為少見,本文也是在清代絲織品文物中首次檢測并成功鑒別的案例。染料和染色工藝的研究有利于文物保護工作者對該類珍貴文物進行科學保存、修復與展示。此外,染料品種的鑒別結果也可作為判斷文物產(chǎn)地的依據(jù),從而挖掘出文物更多的歷史信息。但該文物的深綠色紗線中仍存在某些未知化合物無法準確鑒別,有待于進一步探究。
參考文獻:
[1]CARDON D. Natural Dyes-Sources, Tradition, Technology and Science[M]. London: Archetype Publication Ltd., 2007.
[2]HOFENK J. The Colourful Past-Origins, Chemistry and Identification of Natural Dyestuffs[M]. Riggisberg and London: Abegg-Stiftung and Archetype Publication Ltd., 2004: 20.
[3]劉劍, 陳克, 周旸, 等. 微型光纖光譜技術在植物染料鑒別與光照色牢度評估中的應用[J]. 紡織學報, 2014, 35(6): 85-88.
LIU Jian, CHEN Ke, ZHOU Yang, et al. Identification and light-fastness evaluation of vegetable dyes usingminiature spectrometer with fiber optics[J]. Journal of Textile Research, 2014, 35(6): 85-88.
[4]NAKAMURA R, TANAKA Y, OGATA A, et al. Dye analysis of Shosoin textiles using excitation-emission matrix fluorescence and ultraviolet-visible reflectance spectroscopic techniques[J]. Analytical Chemistry, 2009, 81(14): 5691-5698.
[5]ZHU J, LIU J, FAN Y, et al. SERS detection of anthraquinone dyes: Using solvothermal silver colloid as the substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 282: 121646.
[6]DEGANO I, RIBECHINI E, MODUGNO F, et al. Analytical methods for the characterization of organic dyes in artworks and in historical textiles[J]. Applied Spectroscopy Reviews, 2009, 44(5): 363-410.
[7]ZHANG X, GOOD I, LAURSEN R. Characterization of dyestuffs in ancient textiles from Xinjiang[J]. Journal of Archaeological Science, 2008, 35(4): 1095-1103.
[8]WITKOWSKI B, GANECZKO M, HRYSZKO H, et al. Identification of orcein and selected natural dyes in 14th and 15th century liturgical paraments with high-performance liquid chromatography coupled to the electrospray ionization tandem mass spectrometry (HPLC-ESI/MS/MS)[J]. Microchemical Journal, 2017, 133: 370-379.
[9]DYER J, TAMBURINI D, SOTIROPOULOU S. The identification of lac as a pigment in ancient Greek polychromy: The case of a Hellenistic oinochoe from Canosa di Puglia[J]. Dyes and Pigments, 2018, 149: 122-132.
[10]CAL E, BENZI M, GOSETTI F, et al. Towards the identification of the lichen species in historical orchil dyes by HPLC-MS/MS[J]. Microchemical Journal, 2019, 150: 104140.
[11]王業(yè)宏. 清代前期龍袍研究(1616—1766)[D]. 上海: 東華大學, 2010.
WANG Yehong. A Study on Dragon Robe in Earlier Half Qing Dynasty (1616-1766)[D]. Shanghai: Donghua University, 2010.
[12]LIU J, ZHOU Y, ZHAO F, et al. Identification ofearly synthetic dyes in historical Chinese textiles of latenineteenth century by high-performance liquidchromatography coupled with diode array detection and massspectrometry[J]. Coloration Technology, 2016, 132(2): 177-185.
[13]MANHITA A, FERREIRA T, CANDEIAS A, et al. Extracting natural dyes from wool: An evaluation of extraction methods[J]. Analytical and Bioanalytical Chemistry, 2011, 400(5): 1501-1514.
[14]FERREIRA E S B, HULME A N, MCNAB H, et al. The natural constituents of historical textile dyes[J]. Chemical Society Reviews, 2004, 33(6): 329-336.
[15]嵇含. 南方草木狀[M]. 廣州: 廣東科技出版社, 2009.
JI Han. Nan-fang Ts’ao-mu Chuang: A Fourth Century Flora of Southeast Asia[M]. Guangzhou: Guangdong Science and Technology Press, 2009.
[16]劉劍, 王業(yè)宏. 乾隆色譜: 17—19世紀紡織品染料研究與色彩復原[M]. 杭州: 浙江大學出版社, 2020: 103.
LIU Jian, WANG Yehong. The Qianlong Palette: The Research on Dyes in the 17th-19th Century Textiles and Reconstitution of the Qing Dynasty Colors[M]. Hangzhou: Zhejiang University Press, 2020: 103.
[17]TAMBURINI D. Investigating Asian colourants in Chinese textiles from Dunhuang (7th-10th century AD) by high performance liquid chromatography tandem mass spectrometry: Towards the creation of a mass spectra database[J]. Dyes and Pigments, 2019, 163: 454-474.
[18]李斌. 清代染織專著《布經(jīng)》考[J]. 東南文化, 1991(1): 79-86.
LI Bin. A textual research of textile monograph Book of Cloth in the Qing Dynasty[J]. Southeast Culture, 1991(1): 79-86.
[19]范魯?shù)ぃ?郭丹華, 劉劍, 等. 高效液相色譜—質(zhì)譜聯(lián)用技術鑒別清代小龍袍染料[J]. 絲綢, 2019, 56(2): 50-55.
FAN Ludan, GUO Danhua, LIU Jian, et al. Identification of dyes of small dragon robe in the Qing Dynasty with high performance liquid chromatography-mass spectrometry[J]. Journal of Silk, 2019, 56(2): 50-55.
[20]ZHANG X, MOURI C, MIKAGE M, et al. Preliminary studies toward identification of sources of protoberberine alkaloids used as yellow dyes in Asian objects of historical interest[J]. Studies in Conservation, 2010, 55(3): 177-185.
[21]LIU J, LI W, KANG X, et al. Profiling by HPLC-DAD-MSD reveals a 2500-year history of the use of natural dyes in Northwest China[J]. Dyes and Pigments, 2021(187): 109143.
[22]趙翰生. 《大元氈罽工物記》所載毛紡織史料述[J]. 自然科學史研究, 2013, 32(2): 227-238.
ZHAO Hansheng. An analysis put down natural production record of felts and carpets in Yuan Dynasty Great Encyclopedia of the Yongle Reign[J]. Studies in the History of Natural Sciences, 2013, 32(2): 227-238.
[23]劉基. 多能鄙事[M]. 上海: 上海古籍出版社, 1996: 56.
LIU Ji. Capable of Doing All Sorts of Vulgar Things[M]. Shanghai: Shanghai Classics Publishing House, 1996: 56.
[24]劉劍, 王業(yè)宏, 郭丹華. 傳統(tǒng)靛青染料的生產(chǎn)工藝[J]. 絲綢, 2009(11): 42-43.
LIU Jian, WANG Yehong, GUO Danhua. The processing technique of traditional indigo dyes[J]. Journal of Silk, 2009(11): 42-43.
[25]趙翰生, 李勁松. 藍染植物文獻的另類解讀[J]. 服飾導刊, 2020, 9(1): 17-25.
ZHAO Hansheng, LI Jinsong. An alternative interpretation of documents on blue-dyeing plants[J]. Fashion Guide, 2020, 9(1): 17-25.
Dye identification and color analysis of azurite satin with a crane roundel pattern in the Qing Dynasty
LI Yonggu1, JIN Jianmei2, GAO Suyun1, ZHANG Guowei3, LIU Jian1,3, ZHAO Feng1,2,3
(1a.College of Textile Science and Engineering; 1b.International Institute of Silk, Zhejiang Sci-Tech University,Hangzhou 310018, China; 2.College of Fashion and Design, Donghua University, Shanghai 200051, China;3.China National Silk Museum, Hangzhou 310002, China)
Abstract:Textile cultural relics are the precious heritage of human history and culture, colors are an important expression of textile cultural relics, and dyes are the basic core of color expression. Dye archaeology is an important branch in the study of textile relics. By testing the colors and dyes of cultural relics and combining with ancient literature records, important historical information such as dye source, dyeing process, internal aesthetics, commodity circulation, age and origin of cultural relics can be obtained. The azurite satin with a crane roundel pattern in the Qing Dynasty is well preserved and rich in color, which to some extent represents the dyeing technology level of the Qing Dynasty, so it is of great value to study the history and culture of this silk cultural relic and the dyeing technology of China in the Qing Dynasty.
To learn about the historical information contained in silk textile cultural relics of the Qing Dynasty and excavate the artistic value, the natural dyes used in the azurite satin with a crane roundel pattern collected in China National Silk Museum were detected by using HPLC-MS technology. The retention time of chromatography, the maximum absorption wavelength of the ultraviolet-visible spectrum, and primary and secondary mass spectrometry of the dye pigments were combined to identify the dye raw materials used in the cultural relics. In addition, the use of textile colors in the Qing Dynasty was analyzed by combining the identification results with relevant historical documents in the Qing Dynasty, such as Book of Cloth and Settlement Archives of Dyeing Workshops of the Ministry of Internal Affairs. The results showed that urolithin C, brazilien, curcumin and its two derivatives were detected in the orange embroidery thread of the azurite satin with a crane roundel pattern of the Qing Dynasty. Berberine, palmatine and indirubin were detected in the light green embroidery thread. Isoorientin, luteolin-O-glucoside, and indirubin were detected in the dark green embroidery thread. Indirubin was detected in the blue embroidery thread. It can be concluded that the orange yarn was dyed with sappanwood and turmeric, consistent with the color and dyes used to dye “apricot yellow” recorded in Book of Cloth; the light green yarn was dyed with barberry and indigo, which was similar to the dyeing process of sand green and bean green recorded in the ancient books of Settlement Archives of Dyeing Workshops of the Ministry of Internal Affairs of the Qing Dynasty and The Exploitation of the Works of Nature of the Ming Dynasty. The dark green yarn was dyed with Vitex negundo and indigo; the blue yarn was dyed with indigo. The above colors and dyes correspond to the records in ancient literature, indicating that the process of dyeing secondary colors with multiple dyes in the Ming and Qing dyes was very mature, and people knew about the use of different dyes to obtain different shades of the same color.
In this research, natural dyes used on the azurite satin with a crane roundel pattern of the Qing Dynasty collected by China National Silk Museum were detected and successfully identified, and this cultural relic is also the first case of Vitex negundo to be identified among Qing Dynasty silk fabric artifacts. Based on the dye records in ancient documents, this research speculates the dyeing process corresponding to the color of the cultural relics, and analyzes other information such as the production area of the cultural relics through the corresponding process characteristics and dye distribution in ancient books. The results can provide reference for the color restoration of the Qing Dynasty silk fabrics, and provide a scientific basis for the research on the dyeing history, the protection and display of the silk cultural relics.
Key words:HPLC-MS; azurite satin with crane roundel pattern of the Qing Dynasty; dye identification; dyeing process; indigo; Vitex negundo