甘 雨,宋衛(wèi)鋒,楊佐毅,連澤陽,馬雙念,黃祥武,羊仁高,溫炎標
外源硫誘導下的sp. EPS特性及對Zn(Ⅱ)的吸附
甘 雨,宋衛(wèi)鋒*,楊佐毅,連澤陽,馬雙念,黃祥武,羊仁高,溫炎標
(廣東工業(yè)大學環(huán)境科學與工程學院,廣東 廣州 510006)
研究了3種外源硫(Na2SO4、Na2SO3和Na2S2O3·5H2O)對sp.(.sp.)的胞外聚合物(EPS)的脅迫/誘導作用.結果表明,在還原性硫源0.50g/L Na2SO3的條件下,EPS產(chǎn)量最高,為2104.39mg/g VSS,蛋白質(zhì)含量為1888.52mg/g VSS,較脅迫/誘導前均提高了300%以上;其對Zn(Ⅱ)的吸附性能最好,為954.4mg/g EPS,提高了98.17%.三維熒光(3D-EEM)結果表明,脅迫/誘導后EPS中類酪氨酸均大量增加;傅里葉紅外光譜(FTIR)結果表明,脅迫后-OH、C=O、C-O-C等官能團均大量增加,在Zn(Ⅱ)的吸附中發(fā)揮了重要作用;X光電子能譜(XPS)結果表明,在還原性硫源(Na2SO3和Na2S2O3·5H2O)脅迫/誘導后,EPS中C-O/C-N、C=N和某種含氧基團(X)大量增加,可能是吸附Zn(Ⅱ)的主要基團.
外源硫;脅迫/誘導;EPS;Zn(Ⅱ)
胞外聚合物(EPS)存在于細胞外和微生物聚集體內(nèi)部,為細胞聚集以至形成顆粒污泥的關鍵,主要由蛋白質(zhì)、多糖、腐殖質(zhì)、核酸、脂質(zhì)和磷脂組成,其中蛋白質(zhì)和多糖是主要成分[1-2].產(chǎn)生EPS是細菌的一種自我保護機制,有利于細菌在不良條件中生存[3],其中含有豐富的官能團,如羧基(-COOH)、氨基(-NH2)、羥基(-OH)和羰基(C=O)等,可以和重金屬離子結合,防止重金屬離子進入細胞內(nèi)[4].EPS的產(chǎn)生受多種因素影響,如營養(yǎng)元素碳、氮、磷,以及生長環(huán)境如pH值、溫度等[5].近年來,關于EPS脅迫/誘導研究主要集中在重金屬方面[6-8],脅迫后EPS中官能團的濃度與重金屬的濃度具有相關性,如Zn(Ⅱ)與-OH、C-O-C等官能團[9],還發(fā)現(xiàn)類色氨酸參與了Cr(Ⅵ)的還原[10].重金屬脅迫/誘導不僅能提高EPS產(chǎn)量還可以降低其他重金屬的毒性[11],SRB在Zn(Ⅱ)脅迫/誘導后,EPS對Zn(Ⅱ)、Cu(Ⅱ)和Cd(Ⅱ)的吸附量都增加了[12].但由于重金屬的毒性,難以得到大量的EPS.研究者逐漸將視野轉(zhuǎn)向營養(yǎng)物質(zhì),如碳源[13]和氮源[14].一些特殊的物質(zhì)還可以定向增加官能團的含量,在外源硫Na2S的脅迫/誘導下EPS中蛋白質(zhì)增加了將近一倍,尤其是蛋白質(zhì)中的巰基(-SH) 增加了約48.2%,EPS重金屬的吸附能力也變得更加突出[15].不僅如此,氧化/還原性物質(zhì)也可以起到一定的脅迫/誘導作用[16].因此,EPS的脅迫/誘導因子多種多樣,不應局限于重金屬.
目前,國內(nèi)外對EPS的研究主要集中在好氧菌EPS的脅迫/誘導效應上[17-18],對厭氧菌EPS的脅迫/誘導效應研究較少.硫酸鹽還原菌(SRB)屬于革蘭氏陰性厭氧菌,以乳酸或丙酮酸等碳源為電子供體將硫酸鹽、亞硫酸鹽、硫代硫酸鹽等物質(zhì)還原為硫化氫[19],釋放出的硫離子與吸附在EPS上的重金屬離子形成金屬硫化物沉淀.含硫無機鹽作為SRB的營養(yǎng)物質(zhì),為SRB的生命活動提供能量,如亞硫酸鹽、硫代硫酸鹽可發(fā)生歧化反應生成硫酸鹽并釋放能量[20],也必將促進EPS的合成.硫源對于SRB產(chǎn)生EPS有重要意義,但相應的的研究報道幾乎沒有.
研究EPS與重金屬作用的意義不僅體現(xiàn)在重金屬的去除,也體現(xiàn)在生物合成金屬硫化物中[21],其中Zn(Ⅱ)具有重要價值,如SRB胞外聚合物中的多糖和蛋白質(zhì)均可以提供Zn(Ⅱ)的結合點位,可以更高效的進行吸附,而Cu(Ⅱ)只能與多糖結合[22].不僅如此,EPS與Zn(Ⅱ)的作用是生物合成具有特殊性能的ZnS量子點的重要一環(huán)[21].在以往研究中,使用EDTA-4Na+降低Zn(Ⅱ)的毒性[23],但是EDTA也會與EPS發(fā)生螯合,一定程度上阻礙了生物合成.脅迫/誘導可能會提高SRB對Zn(Ⅱ)的吸附能力,也就可能通過脅迫/誘導促進生物合成ZnS.
本研究所使用菌種為脫硫弧菌脫硫亞種(sp.),以3種外源硫(Na2SO4、Na2SO3、Na2S2O3·5H2O)為脅迫/誘導因子,在同一濃度梯度下對.sp.進行培養(yǎng),探究其生長情況、EPS產(chǎn)量及組分和吸附性能的變化,并通過多種測試分析方法揭示脅迫/誘導作用規(guī)律.研究發(fā)現(xiàn)EPS的產(chǎn)量大量增加,且作為主要成分的蛋白質(zhì)產(chǎn)量極高,對高效處理重金屬廢水有啟發(fā)作用.
菌種為.sp.,由北京百歐博偉生物科技有限公司提供,經(jīng)平板劃線法厭氧培養(yǎng)3~4代后接種至液體培養(yǎng)基厭氧活化培養(yǎng),然后用甘油于-80.00℃中保存待用.
厭氧血瓊脂培養(yǎng)基:從廣州翔博生物科技有效公司購得,由一次性無菌塑料平皿和瓊脂培養(yǎng)基組成.其中,每1.00L瓊脂含10.00g酪蛋白胰酶消化物、400.00mL半胱氨酸、1.00g玉米淀粉、14.00g瓊脂、0.01g維生素K1、5.00g酵母浸出粉,5.00g氯化鈉、70.00mL羊血或馬血,加蒸餾水至1.00L配制而成.
Starkey培養(yǎng)基[24]:稱取0.50g K2HPO4、1.00g NH4Cl、1.00g Na2SO4、0.10g CaCl2·2H2O、2.00g MgSO4·7H2O 、2.00g DL-乳酸鈉、1.00g酵母粉,用超純水定容至1.00L,調(diào)節(jié)pH值為(7.00±0.20),于錐形瓶中121℃高壓滅菌20min,冷卻至常溫.使用前加入用無菌水配置的抗壞血酸,使其在培養(yǎng)基中的濃度為0.10g/L.初始Starkey培養(yǎng)基中不含SO32-和S2O32-,初始SO42-濃度為1.46g/L.
外源硫溶液:誘導/脅迫所使用的外源硫為SO42-、SO32-和S2O32-,以Na2SO4、Na2SO3和Na2S2O3·5H2O溶液的形式加入到培養(yǎng)基中.
將.sp.凍干粉用0.20mL無菌水溶解,用平板劃線法接種至厭氧血瓊脂培養(yǎng)基中,裝入?yún)捬醮⒊掷m(xù)吹入氮氣5min,于30℃恒溫培養(yǎng)箱中厭氧活化培養(yǎng)48h,再挑取單個菌落重復上述厭氧活化培養(yǎng)步驟3~4次,確保菌種復蘇,恢復活性.
然后挑取單個菌落接種至Starkey液體培養(yǎng)基中,持續(xù)吹入氮氣1min后密封,于35℃,150r/min的條件下恒溫震蕩培養(yǎng)48h后,用甘油于-80℃(Haier 醫(yī)用低溫保存箱DW-86L338J)中保存待用.
將菌種解凍至常溫后以5.00%()接種至Starkey液體培養(yǎng)基中,持續(xù)吹入氮氣1min后密封,于35℃,150r/min的條件下恒溫震蕩培養(yǎng)24h后,再以10.00%()分別接種到濃度為0,0.10,0.20,0.30, 0.40,0.50,0.60,0.70,0.80,0.90g/L不同外源硫的Starkey液體培養(yǎng)基中,持續(xù)吹入氮氣1min后密封,于35℃,150r/min的條件下恒溫震蕩厭氧培養(yǎng)72h,達到穩(wěn)定期[24].上述接種過程均在無菌條件下進行.
采用NaOH法提取EPS[24].取30.00mL經(jīng)外源硫脅迫/誘導培養(yǎng)后的菌液,在8000r/min,4℃的條件下離心10min;棄掉上清液,加入30.00mL的0.90%NaCl,震蕩洗滌菌體,再于上述相同條件下離心10min;棄掉上清液,加入20.00mL的0.90%NaCl,震蕩洗滌菌體,再以5.00%()加入1.00ml的1.00mol/L NaOH,搖勻,于4℃條件下靜止3h;于4℃下,分別在16000r/min和8000r/min的條件下,各離心20min和15min;取上清液于0.45μm過濾器中過濾,再置于4000Da透析袋中透析24h,提純EPS后于-20℃下保存?zhèn)溆?
EPS產(chǎn)量用蛋白質(zhì)、多糖、核酸三者之和表示,3種成分分別用考馬斯亮藍法、硫酸蒽酮法、二苯胺法進行測定.EPS產(chǎn)量的實驗結果取3次平行實驗的平均值.
1.4.1 三維熒光光譜(3D-EEM)分析 用Edinburgh FLS1000型熒光分光光度計測定,對EPS主要成分進行比較分析,激發(fā)光(x)和發(fā)射光(m)掃描范圍分別為200~450nm、200~550nm.
1.4.2 X射線光電子能譜(XPS)分析 采用K- Alpha型X射線光電子能譜儀(賽默飛,英國)對EPS進行測試分析.能譜掃描范圍為0.00~1200.00eV,能譜采用C 1s(284.80eV校正),分辨率:pass energy 100.00eV,C 1s和O 1s等分辨率為40.00eV.所有的峰都用C 1s峰的結合能在284.80eV校準.
1.4.3 傅里葉紅外光譜(FTIR)分析 采用Thermo Scientific Nicolet iS20型傅里葉變換紅外光譜儀對EPS進行測試分析.掃描范圍為400~4000cm-1,分辨率為4cm-1,樣品掃描次數(shù)為32.
配制濃度為20.00mg/L的Zn(Ⅱ)溶液,調(diào)節(jié)pH值為5.00,取不同脅迫/誘導條件得到的等質(zhì)量(0.10mg)的EPS于錐形瓶中,并加入上述Zn(Ⅱ)溶液15.00mL.于35℃、150r/min條件下震蕩吸附2h,然后將混合物裝入分子量為4000Da的透析袋中,于200.00mL的超純水中透析12h.用火焰原子吸收分光光度計測定透析后樣品中Zn(Ⅱ)的濃度.吸附實驗的結果均取3次實驗結果的平均值.EPS吸附量的公式如下:
= (00-CV)/(1)
式中:為重金屬吸附量,mg/g EPS;0為金屬離子初始濃度,mg/L;0為初始溶液體積,L;C為吸附后金屬離子濃度,mg/L;V為透析液體積,L;為EPS質(zhì)量,g.
采用3種不同的外源硫作為脅迫/誘導因子,在0~0.90g/L的濃度梯度下對.sp.進行脅迫/誘導,相應的EPS分別記為Na2SO4-EPS,Na2SO3-EPS,Na2S2O3-EPS,空白樣記為Control-EPS.
為了方便對比,本文中以外源硫的濃度來表示脅迫/誘導強度,由圖1可看出,.sp在3種不同外源硫的脅迫/誘導下,總體趨勢是細胞干重隨著脅迫/誘導濃度的增加先減少后增加.其中,Na2SO3對于細菌的生長影響最大,在Na2SO3脅迫/誘導下細胞干重基本上低于相同濃度的Na2SO4和Na2S2O3·5H2O,當Na2SO3濃度達到0.50g/L時,細胞干重為0.40g/L,相較于脅迫/誘導前,降低了44.51%.當脅迫/誘導濃度達到1.20g/L時,在Na2SO4和Na2S2O3·5H2O條件下,細菌大量繁殖,細胞干重大幅增加.Na2SO4脅迫/誘導下細胞干重最高,達到1.42g/L,增幅為106.37%.Na2SO3的條件下,細胞干重增長趨勢十分緩慢.
圖1 不同濃度外源硫脅迫/誘導下D. desulfuricans sp.單位體積培養(yǎng)基的細胞干重
由圖2可知,雖然在Na2SO3脅迫/誘導下.sp.細胞干重減少了,但在0.50g/L時,其單位質(zhì)量微生物的EPS產(chǎn)量卻是最高的,EPS的產(chǎn)量從脅迫/誘導前的494.38mg/g VSS提高到2104.39mg/g VSS,提高了325.66%,其中蛋白質(zhì)的產(chǎn)量從451.44mg/g VSS提高到了1888.52mg/g VSS,提高了318.33%,整體上單位體積培養(yǎng)基的EPS產(chǎn)量相差并不明顯.
Na2SO4為0.60g/L時,EPS產(chǎn)量從494.38mg/g VSS提高到833.13mg/g,提高了68.52%,其中蛋白質(zhì)從451.44mg/g VSS提高到744.28mg/g VSS,提高了74.71%;Na2S2O3·5H2O為0.70g/L時,EPS的產(chǎn)量從脅迫/誘導前的494.38mg/g VSS提高到1247.39mg/g VSS,提高了152.31%,其中蛋白質(zhì)產(chǎn)量從451.44mg/g VSS提高到了1186.94mg/g VSS,提高了162.92%.另外,3種條件下EPS中的多糖變化不明顯,但其產(chǎn)量同樣在相應的最佳脅迫/誘導濃度下達到最大(Na2SO4:88.86mg/g VSS、Na2SO3:215.87mg/g VSS、Na2S2O3·5H2O:60.46mg/g VSS),而DNA未檢測出.
由上述可知,在3種外源硫中,還原性硫源Na2SO3對.sp.的脅迫/誘導最為突出, Na2S2O3·5H2O次之,Na2SO4較差.Na2SO3超過最佳脅迫/誘導濃度,EPS和蛋白質(zhì)的產(chǎn)量會迅速降低至最高值的46.81%、47.51%,隨著濃度增加會變得更低.由此可見Na2SO3既能顯著提高.sp.EPS產(chǎn)量,超過一定范圍也能顯著抑制EPS的產(chǎn) 生.
在SRB還原硫酸鹽途徑中,SRB需要消耗能量還原硫酸鹽,SRB可以將亞硫酸鹽或者硫代硫酸鹽歧化,生成硫酸鹽,同時釋放能量供其生命活動所需.在本研究中,Na2SO3脅迫效果最好極有可能是其能夠提供更多的能量以合成氨基酸,而硫代硫酸鹽歧化釋放的能量較少,所以脅迫效果次之.已有研究表明,亞硫酸鹽歧化釋放的能量遠大于硫代硫酸鹽[20].
圖3 不同濃度外源硫脅迫下EPS對Zn(Ⅱ)的吸附量
由圖3可知,脅迫/誘導下的EPS對Zn(Ⅱ)的吸附量在整體上均體現(xiàn)出先增加后減少的趨勢. Na2SO4最佳脅迫/誘導濃度為0.60g/L時,吸附量從脅迫/誘導前的481.6mg/g EPS增加到了893.6mg/g EPS,提高了85.54%;Na2SO3為0.50g/L時,吸附量增加到954.4mg/g EPS,提高了98.17%;Na2S2O3·5H2O為0.70g/L時,吸附量增加到871.8mg/g EPS,提高了81.02%.
Na2SO3-EPS對Zn(Ⅱ)的吸附能力較強, Na2SO4-EPS的吸附能力次之,Na2S2O3-EPS的吸附能力較差.結合EPS產(chǎn)量和組分變化規(guī)律,Na2SO3對.sp.的脅迫/誘導效果最為明顯,不僅大幅提高了EPS產(chǎn)量(尤其是蛋白質(zhì)),且對Zn(Ⅱ)的吸附能力也成倍增加.當脅迫/誘導濃度超過一定范圍,不僅EPS產(chǎn)量減少,且吸附Zn(Ⅱ)能力也減弱.
總體上看,Na2SO3、Na2SO4和Na2S2O3·5H2O脅迫/誘導可以提高EPS的重金屬吸附性能,且吸附性能變化趨勢與組分變化規(guī)律基本一致.
用三維熒光光譜研究3種外源硫的最佳脅迫/誘導前后的EPS.由于EPS樣品中含水,測試結果均減去空白水樣的背景值.
由圖4和表1可知,Peak A強度較高而Peak B強度較低,它們分別為可溶性微生物產(chǎn)物(SMP)和酪氨酸,均含有C=O、-NH2/NH、-COOH、-OH等官能團,可以與重金屬離子進行螯合和吸附.
圖4 外源硫脅迫/誘導前后EPS三維熒光譜圖
表1 熒光光譜中的譜峰信息及其對應成分
Na2SO4的脅迫/誘導下,反映蛋白類物質(zhì)的Peak B強度與Control-EPS相比,提高65.51%; Na2SO3的脅迫/誘導下,Peak B強度提高103.45%; Na2S2O3·5H2O脅迫/誘導下,Peak B強度提高44.83%,而Peak A強度增長緩慢.由此推斷,類酪氨酸為脅迫/誘導后主要增加的蛋白質(zhì)類產(chǎn)物,在提高EPS重金屬吸附性能中發(fā)揮關鍵作用,SMP雖熒光強度高,含量多[27],但是從Na2SO4-EPS和Na2S2O3-EPS的重金屬吸附能力變化上分析,SMP并不是發(fā)揮主要作用組分.
由圖5可知,EPS在外源硫脅迫/誘導前后的關鍵官能團變化明顯,脅迫后原有特征峰峰值變大,且增加了新特征峰.數(shù)學模型證明,譜峰強度與樣品中官能團的濃度或數(shù)量具有正相關性[28],脅迫/誘導后EPS中官能團濃度均大量增加.
圖5 外源硫脅迫/誘導前后EPS傅里葉紅外光譜圖
在3400cm-1處的特征峰對應于碳水化合物中-OH官能團的拉伸和彎曲[29],該官能團在Na2SO3-EPS中的相對峰值最大,Na2S2O3-EPS次之;1750cm-1處對應于酯類中的C=O[30],僅出現(xiàn)在Na2SO3-EPS中;1450cm-1處對應可取代的CO32-官能團,CO32-官能團的拉伸和彎曲可能與該官能團在有機相中連接著-OH和-NH有關[31],該官能團在Na2SO3-EPS中的峰值最大,Na2SO4-EPS次之; 880cm-1處為多糖中醚基(C-O-C)[32],該官能團在Na2SO3-EPS與Na2SO4-EPS中的峰值幾乎一樣;700cm-1處為碳骨架中的-CH2[33],2600cm-1處難以確定具體的官能團和振動種類[34].
上述官能團中的-OH、C=O、C-O-C在重金屬吸附中能發(fā)揮重要作用[35],這些官能團在Na2SO3脅迫/誘導后增加幅度最大,說明Na2SO3-EPS具有最強的重金屬吸附能力,這與前面的試驗和測試結果一致.
值得指出的是,2.4中類酪氨酸的熒光強度變化規(guī)律與CO32-官能團紅外光譜譜峰值變化規(guī)律一致,結合CO32-官能團在1450cm-1的振動規(guī)律,推斷CO32-的出現(xiàn)極有可能是其連接著類酪氨酸中的-OH或-NH.因此,CO32-的峰值也能說明Na2SO3- EPS含有更多的類酪氨酸.
2.6.1 XPS C譜分析 C是構成EPS的主要元素之一,脅迫/誘導前后EPS中C元素的存在形態(tài)及相對含量如圖6和表2所示(XPS表征分析中EPS均未吸附重金屬).
圖6 外源硫脅迫/誘導前后EPS的X射線能譜分析(C譜)
表2 脅迫/誘導前后EPS中C譜信息
通過圖6和表2可知,EPS中C元素的存在形態(tài)要分為3種[36]:位于284.75eV的C-C/C-H鍵,存在于脂肪族或氨基酸側(cè)鏈中[37];286.23-286.44eV處的C-O/C-N鍵;288.18-289.28處的C=O鍵.Na2SO4、Na2SO3和Na2S2O3·5H2O對C元素的脅迫/誘導效應整體上一致,都合成了更多的脂肪族或氨基酸側(cè)鏈,生成更多的蛋白質(zhì).進一步分析,脅迫后Na2SO3- EPS脂肪族或氨基酸側(cè)鏈占比最少,而C-O/C-N增加最多(其他兩種情形未測出),C=O增加不是最多的.與其吸附能力相聯(lián)系,整體上可以推斷C=O與脂肪族或氨基酸側(cè)鏈在吸附中很可能并不發(fā)揮主要作用,C-O/C-N才是吸附作用的主要官能團.官能團與重金屬之間的作用還受到主鏈和相鄰官能團的影響,還需要深入研究.
2.6.2 XPS O譜分析 O是構成EPS的主要元素之一,脅迫/誘導前后EPS中O元素的存在形態(tài)及相對含量如圖7和表3所示.
圖7 外源硫脅迫/誘導前后EPS的X射線能譜分析(O譜)
表3 脅迫/誘導前后EPS中O譜信息
文獻認為,EPS中O的化學存在形態(tài)主要分為2種,分別對應約531eV(C-O-C/C-OH)和約532eV (C=O)[7,38-39],但在由上述圖表中,未得到532eV處的峰,卻意外得到了535.40eV處的峰,說明O還存在其他形態(tài),但無法通過文獻確定其名稱,暫記為含氧基團X.由于其結合能較高,說明其比較穩(wěn)定,且與重金屬有良好的結合能力,該基團的名稱、性質(zhì)還需要進一步的研究.通過對比發(fā)現(xiàn),C-O-C/C-OH鍵在Na2SO3和Na2S2O3·5H2O脅迫/誘導后出現(xiàn)不同程度的降低,而含氧基團X增加趨勢與Zn(Ⅱ)吸附能力變化相一致,可能在吸附中發(fā)揮主要作用.
2.6.3 XPS N譜分析 N是構成EPS的重要元素,脅迫/誘導前后EPS中N元素的存在形態(tài)及相對含量如圖8和表4所示.
圖8 外源硫脅迫/誘導前后EPS的X射線能譜分析(N譜)
表4 脅迫/誘導前后EPS中N譜信息
EPS中N的化學形態(tài)主要分為2種[36]:位于397.10~397.78eV的亞胺(C=N)鍵;399.48~399.72eV處的-NH-鍵.通過對比脅迫/誘導前后發(fā)現(xiàn),在Na2SO3和Na2S2O3·5H2O的脅迫/誘導作用下C=N鍵的相對含量升高,而-NH-鍵數(shù)量降低.在Na2SO4脅迫/誘導作用下,兩者相對含量變化輕微.
C=N鍵的形成一般認為是N取代了C=O鍵中的O,與重金屬螯合的能力很強[40-41],使得EPS的重金屬吸附能力增強;-NH-鍵的減少說明取代O的N可能來自-NH-鍵.Na2SO3-EPS中C=N鍵含量大幅增加很可能是重金屬吸附能力提高的又一關鍵因素.
3.1 在一定范圍內(nèi),隨著外源硫濃度的增大,.sp.EPS產(chǎn)量呈現(xiàn)出先增加后減少的趨勢.0.50g/L Na2SO3的脅迫/誘導效果最好,單位質(zhì)量微生物EPS和蛋白質(zhì)產(chǎn)量比脅迫/誘導前提高了325.66%和318.33%,達到2104.39mg/g VSS和1888.52mg/g VSS.
3.2 脅迫/誘導下的EPS吸附Zn(Ⅱ)的性能也發(fā)生了重大變化.EPS對Zn(Ⅱ)的吸附量在整體上均體現(xiàn)出先增加后減少的趨勢.在最佳Na2SO3脅迫/誘導強度下,吸附量從脅迫/誘導前的481.6mg/g EPS增加到954.4mg/g EPS,提高了98.17%.
3.3 3D-EEM和FTIR分析表明,脅迫/誘導后EPS中可溶性微生物產(chǎn)物和類酪氨酸的含量和與重金屬離子結合的官能團(-OH、C=O、C-O-C等)大幅增加;XPS測試表明,Na2SO3-EPS具有豐富的C-O/ C-N、C=N和某種含氧基團,是吸附性能大幅增加的根本原因.
[1] Shi Y, Huang J, Zeng G, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview [J]. Chemosphere, 2017,180:396-411.
[2] Siddharth T, Sridhar P, Vinila V, et al. Environmental applications of microbial extracellular polymeric substance (EPS): A review [J]. Journal of Environmental Management, 2021,287:112307.
[3] Xie Q, Liu N, Lin D, et al. The complexation with proteins in extracellular polymeric substances alleviates the toxicity of Cd (II) to Chlorella vulgaris [J]. Environmental Pollution, 2020,263(Pt A):114102.
[4] Zhang P, Chen Y P, Peng M W, et al. Extracellular polymeric substances dependence of surface interactions of Bacillus subtilis with Cd(2+) and Pb(2+): An investigation combined with surface plasmon resonance and infrared spectra [J]. Colloids And Surfaces B -Biointerfaces, 2017,154:357-364.
[5] Cabral L, Giovanella P, Kerlleman A, et al. Impact of selected anions and metals on the growth and in vitro removal of methylmercury by Pseudomonas putida V1 [J]. International Biodeterioration & Biodegradation, 2014,91:29-36.
[6] 孫夢格,宋衛(wèi)鋒,楊佐毅,等.Cd(Ⅱ)脅迫/誘導下銅綠假單胞菌EPS組分變化及其吸附性能 [J]. 環(huán)境科學學報, 2021,41(9):3427-3436.
Sun M G, Song W F, Yang Z Y, et al.Effect of Cd(Ⅱ) stress on the variation in extracellular polymeric substances composition and adsorption performance of[J]. Journal of Environmental Science, 2021,41(9):3427-3436.
[7] Lian Z, Yang Z, Song W, et al. Effects of different exogenous cadmium compounds on the chemical composition and adsorption properties of two gram-negative bacterial EPS [J]. Science of Total Environment, 2021,806(Pt 1):150511.
[8] 曾嶠婧,周 鑫,黃 超,等.白腐菌聯(lián)合納米零價鐵強化去除水中Cd(Ⅱ) [J]. 中國環(huán)境科學, 2022,42(7):3174-3183.
Zeng Q J, Zhou X, Huang C, et al. Enhanced removal of Cd(Ⅱ) from aqueous solution by nanoscale zero-valent iron coupled with white rot fungus [J]. China Environmental Science, 2022,42(7):3174-3183.
[9] Li Y P, You L X, Yang X J, et al. Extrapolymeric substances (EPS) in Mucilaginibacter rubeus P2displayed efficient metal(loid) bio- adsorption and production was induced by copper and zinc [J]. Chemosphere, 2022,291(Pt 1):132712.
[10] Luo X, Zhou X, Peng C, et al. Bioreduction performance of Cr(VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan [J]. Journal of Hazardous Materials, 2022,433.
[11] Yue Z B, Li Q, Li C C, et al. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria [J]. Bioresource Technology, 2015,194:399- 402.
[12] 李明明.硫酸鹽還原菌胞外聚合物與金屬離子的交互作用 [D]. 合肥:合肥工業(yè)大學, 2014.
Li M M. Analysis of the interaction between heavy metal and EPS isolated from sulfate reducing bacteria [D]. Hefei: Hefei University of Technology, 2014.
[13] Miqueleto A P, Dolosic C C, Pozzi E, et al. Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment [J]. Bioresource Technology, 2010,101(4):1324-1330.
[14] Qian L, Ye X, Xiao J, et al. Nitrogen concentration acting as an environmental signal regulates cyanobacterial EPS excretion [J]. Chemosphere, 2022,291(Pt 2):132878.
[15] Li Q, Song W, Sun M, et al. Response of Bacillus vallismortis sp. EPS to exogenous sulfur stress/ induction and its adsorption performance on Cu(II) [J]. Chemosphere, 2020,251:126343.
[16] Han X, Wang Z, Chen M, et al. Acute Responses of Microorganisms from Membrane Bioreactors in the Presence of NaOCl: Protective Mechanisms of Extracellular Polymeric Substances [J]. Environmental Science & Technology, 2017,51(6):3233-3241.
[17] Dai M, Zhou G, Ng H Y, et al. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress [J]. Journal of Environmental Management, 2019,250: 109519.
[18] Xu R, Fu Y, Xu Y, et al. Comparing biotransformation of extracellular polymeric substances (EPS) under aerobic and anoxic conditions: Reactivities, components, and bacterial responses [J]. Chemosphere, 2022,296:133996.
[19] Zheng Y, Bu N-S, Long X-E, et al. Sulfate reducer and sulfur oxidizer respond differentially to the invasion of Spartina alterniflora in estuarine salt marsh of China [J]. Ecological Engineering, 2017,99: 182-190.
[20] 王 原.珠江沉積物中SRB的群落結構、分離篩選和生理生化特性鑒定 [D]. 華南理工大學, 2013.
Wang Y. Community Structure, Isolation, Biochemical and Physiological Identification of Sulfate-Reducing Bacteria from Pearl River Sediments [D]. Guangzhou: South China University of Technology, 2013.
[21] Su Z, Li X, Xi Y, et al. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance [J]. Science of Total Environment, 2022,825:153767.
[22] Wang J, Li Q, Li M M, et al. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria [J]. Bioresource Technology, 2014,163:374-6.
[23] Qi S, Zhang M, Guo X, et al. Controlled extracellular biosynthesis of ZnS quantum dots by sulphate reduction bacteria in the presence of hydroxypropyl starch as a mediator [J]. Journal of Nanoparticle Research, 2017,19(6).
[24] 萬正強.EPS在硫酸鹽脫硫弧菌(Desulfovibrio desulfuricans)去除重金屬Cd2+過程作用研究 [D]. 合肥:合肥工業(yè)大學, 2013.
Wan Z Q. Study on the role of EPS in the removal of heavy metal Cd2+by Desulfovibrio desulfuricans [D]. Hefei: Hefei University of Technology, 2013.
[25] Zan F, Huang H, Guo G, et al. Sulfite pretreatment enhances the biodegradability of primary sludge and waste activated sludge towards cost-effective and carbon-neutral sludge treatment [J]. Science of Total Environment, 2021,780:146634.
[26] Yu B, Lou Z, Zhang D, et al. Variations of organic matters and microbial community in thermophilic anaerobic digestion of waste activated sludge with the addition of ferric salts [J]. Bioresource Technology, 2015,179:291-298.
[27] Ma B, Li S, Wang S, et al. Effect of Fe3O4nanoparticles on composition and spectroscopic characteristics of extracellular polymeric substances from activated sludge [J]. Process Biochemistry, 2018,75:212-220.
[28] Palencia M. Functional transformation of Fourier-transform mid-infrared spectrum for improving spectral specificity by simple algorithm based on wavelet-like functions [J]. Journal of Advanced Research, 2018,14: 53-62.
[29] Xu Y, Liu P, Zhang Y. Mid-infrared spectroscopy of hemispherical water droplets [J]. Spectrochimica Acta Parta A-Molecular And Biomolecular Spectroscopy, 2022,264:120256.
[30] Kamnev A A, Tugarova A V, Dyatlova Y A, et al. Methodological effects in Fourier transform infrared (FTIR) spectroscopy: Implications for structural analyses of biomacromolecular samples [J]. Spectrochimica Acta Parta A-Molecular And Biomolecular Spectroscopy, 2018,193:558-564.
[31] Waheed S, Sultan M, Jamil T, et al. Comparative Analysis of Hydroxyapatite Synthesized by Sol-gel, Ultrasonication and Microwave Assisted Technique [J]. Materials Today: Proceedings, 2015,2(10):5477-5484.
[32] Ali H U, Iqbal D N, Iqbal M, et al. HPMC crosslinked chitosan/ hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications [J]. Arabian Journal of Chemistry, 2022,103850.
[33] Khare N, Bajpai J, Bajpai A K. Graphene coated iron oxide (GCIO) nanoparticles as efficient adsorbent for removal of chromium ions: Preparation, characterization and batch adsorption studies [J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10:148-162.
[34] Bao F, Zong L, Li N, et al. Synthesis of novel poly(phthalazinone fluorenyl ether ketone ketone)s with improved thermal stability and processability [J]. Thermochimica Acta, 2020,683.
[35] Zhang M, Hou S, Li Y, et al. Single evaluation and selection of functional groups containing N or O atoms to heavy metal adsorption: Law of electric neutrality [J]. Chemosphere, 2022,287(Pt 2):132207.
[36] Maaza L, Djafri F, Belmokhtar A, et al. Evaluation of the influence of Al2O3nanoparticles on the thermal stability and optical and electrochemical properties of PANI-derived matrix reinforced conducting polymer composites [J]. Journal of Physics and Chemistry of Solids, 2021,152.
[37] 連澤陽,楊佐毅,宋衛(wèi)鋒,等.外源Cd(Ⅱ)脅迫Alcaligenes faecalis過程中陰離子對EPS產(chǎn)量及其特性的影響 [J]. 環(huán)境科學學報, 2022,42(4):81-90.
Lian Z Y, Yang Z Y, Song W F, et al. The effect of anions on the yield and characteristics of EPS during the process of exogenous Cd(Ⅱ) stress/induction of Alcaligenes faecalis [J]. Journal of Environmental Science: 2022,42(4):81-90.
[38] Szcze? A, Czemierska M, Jarosz-Wilko?azka A. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus [J]. Journal of Solid State Chemistry, 2016,242:212-221.
[39] Lin D, Ma W, Jin Z, et al. Interactions of EPS with soil minerals: A combination study by ITC and CLSM [J]. Colloids And Surfaces B -Biointerfaces, 2016,138:10-6.
[40] Han J, Pei L, Du Y, et al. Tripolycyanamide-2,4,6-triformyl pyrogallol covalent organic frameworks with many coordination sites for detection and removal of heavy metal ions [J]. Journal of Industrial and Engineering Chemistry, 2022,107:53-60.
[41] Qin L, Ge Y, Deng B, et al. Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water [J]. Journal of the Taiwan Institute of Chemical Engineers, 2017,71:84-90.
The EPS characteristics ofsp. and its adsorption performance for Zn(Ⅱ) under exogenous sulfur induction.
GAN Yu, SONG Wei-feng*, YANG Zuo-yi, LIAN Ze-yang, MA Shuang-nian, HUANG Xiang-wu, YANG Ren-gao, WEN Yan-biao
(School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China)., 2022,42(11):5144~5152
In this paper, the effect of exogenous sulfur (Na2SO4, Na2SO3, Na2S2O3·5H2O) stress/induction on extracellular polymeric substances(EPS) ofsp. (.sp.)was studied. The results showed that addition of 0.50g/L Na2SO3led to the highest EPS yield of 2104.39mg/g VSS (1888.52mg/g VSS of protein content), which was 300% higher than that without Na2SO3addition, and as a result, 98.17% increase in Zn(II) adsorption capacity (954.4mg/g EPS) achieved. Three-dimensional fluorescence (3D-EEM) spectral results showed that tyrosine-like substances in EPS were greatly increased aftersulfurstress/induction; Fourier transform infrared spectroscopy (FTIR) results showed that significant increases in functional groups such as —OH, C=O, C—O—C EPS were mainly responsible for the enhance adsorption of Zn(II); The results of X-ray photoelectron spectroscopy (XPS) results showed that the content of C—O/C—N, C=N and oxygen-containing functional group (X) in EPS increased after sulfur stress/induction (Na2SO3and Na2S2O3·5H2O).
exogenous sulfur;stress/induction;EPS;Zn(Ⅱ)
X172
A
1000-6923(2022)11-5144-09
甘 雨(1997-),男,廣東惠州人,廣東工業(yè)大學碩士研究生,主要從事EPS吸附重金屬及介導合成金屬硫化物.發(fā)表論文2篇.
2022-04-18
廣東省自然科學基金資助項目(2021A1515010558)
* 責任作者, 教授, weifengsong@gdut.edu.cn