雷露露,周穎玥*,李馳,王欣宇,趙家琦
基于多尺度快速非局部平均濾波的超聲圖像去斑算法
雷露露1,2,周穎玥1,2*,李馳1,2,王欣宇1,2,趙家琦1,2
(1.西南科技大學(xué) 信息工程學(xué)院,四川 綿陽(yáng) 621010; 2.特殊環(huán)境機(jī)器人技術(shù)四川省重點(diǎn)實(shí)驗(yàn)室(西南科技大學(xué)),四川 綿陽(yáng) 621010)(*通信作者電子郵箱zhouyingyue@swust.edu.cn)
超聲成像因其便捷、廉價(jià)、無(wú)輻射等優(yōu)點(diǎn)被廣泛應(yīng)用于臨床診斷中,然而圖像中的斑點(diǎn)噪聲可能對(duì)臨床診斷或后續(xù)圖像分析產(chǎn)生不利影響。作為一種典型的去噪技術(shù),在利用非局部平均濾波(NLMF)對(duì)超聲圖像進(jìn)行去斑時(shí),會(huì)存在時(shí)耗高、濾波參數(shù)不易設(shè)置等不足,因此,提出一種多尺度快速非局部平均濾波(MF-NLMF)算法用來(lái)去除超聲圖像的斑點(diǎn)噪聲。首先提出快速非局部平均濾波(F-NLMF)算法,利用互相關(guān)濾波技術(shù)減少運(yùn)算時(shí)耗;接著設(shè)置多種窗口參數(shù)獲得多幅去斑結(jié)果,而模型參數(shù)值可根據(jù)窗口尺寸自適應(yīng)調(diào)節(jié);最后將多幅去斑結(jié)果進(jìn)行融合得到最終的去斑圖像。實(shí)驗(yàn)結(jié)果表明:在相同實(shí)驗(yàn)條件下,與傳統(tǒng)NLMF算法相比,F(xiàn)-NLMF算法的運(yùn)算時(shí)間至少減少了96.04%;而MF-NLMF算法與迭代貝葉斯非局部均值濾波(IBNLMF)等算法相比,去斑圖像的峰值信噪比(PSNR)值、特征相似度測(cè)度(FSIM)值、對(duì)比度噪聲比(CNR)和信噪比(SNR)分別提高了0.73 dB、0.011、0.000 5、0.001 6以上。
斑點(diǎn)噪聲;非局部平均濾波;多尺度;自適應(yīng);快速濾波
超聲成像是觀察人體內(nèi)部組織器官的有效技術(shù),與其他醫(yī)學(xué)影像成像方式相比,超聲成像具有無(wú)創(chuàng)、無(wú)損、廉價(jià)、方便、實(shí)時(shí)等優(yōu)點(diǎn),被廣泛應(yīng)用在醫(yī)學(xué)診斷中,尤其是孕婦胎兒成長(zhǎng)狀況的檢查[1]。然而像所有相干成像方法一樣,由于成像過(guò)程的固有缺陷,超聲圖像存在斑點(diǎn)噪聲[2]污染,從而降低了超聲圖像的質(zhì)量,給臨床診斷以及后續(xù)的圖像特征提取和識(shí)別造成了不利的影響。因此,抑制超聲圖像中的斑點(diǎn)噪聲并保留圖像中的重要細(xì)節(jié)是十分必要的。
針對(duì)超聲圖像的斑點(diǎn)抑制問(wèn)題,學(xué)者們已經(jīng)提出許多方法,這些方法可分為六類(lèi):局部自適應(yīng)濾波、基于偏微分方程的濾波、基于小波變換的濾波、基于非局部平均的濾波、基于深度學(xué)習(xí)的去斑方法和混合去斑法。經(jīng)典的自適應(yīng)濾波去斑方法包括Lee濾波[3]、Frost濾波[4]、Kuan濾波[5]、自適應(yīng)中值濾波[6]等,雖然這類(lèi)方法具有較低的算法復(fù)雜度,但它們往往是在損失一定的邊緣細(xì)節(jié)的基礎(chǔ)上去除斑點(diǎn)噪聲?;谄⒎址匠痰臑V波方法包括各種形式的各向異性擴(kuò)散[7-10]去斑方法,這些方法能在一定程度上避免原始圖像的模糊,但涉及迭代運(yùn)算,計(jì)算比較復(fù)雜[11]?;谛〔ㄗ儞Q[12-13]的多尺度去斑方法有硬閾值法、軟閾值法等,它們的去斑效果良好,但在細(xì)節(jié)保持能力上仍有限?;诜蔷植科骄鶠V波(Non-Local Means Filter, NLMF)的去斑方法充分考慮了圖像中充滿(mǎn)著豐富的冗余信息,采用非局部加權(quán)平均的方式對(duì)圖像去斑,該類(lèi)方法簡(jiǎn)單、易操作,但存在速度較慢、參數(shù)設(shè)置不靈活的問(wèn)題。隨著深度學(xué)習(xí)技術(shù)在信號(hào)處理領(lǐng)域的廣泛應(yīng)用,一些學(xué)者利用神經(jīng)網(wǎng)絡(luò)模型去除圖像斑點(diǎn)噪聲,也取得了非常不錯(cuò)的效果,然而該技術(shù)在網(wǎng)絡(luò)模型訓(xùn)練的過(guò)程中需要用到大量的圖片,因此操作起來(lái)具有一定的復(fù)雜性?;旌先グ叻椒ㄊ菍⒍喾N圖像先驗(yàn)融合到一個(gè)去斑模型中,例如將非局部相似與稀疏表示[14]或低秩先驗(yàn)[15]結(jié)合形成去斑模型,這類(lèi)方法也取得了較好的去斑效果,但是在模型求解時(shí)用到了復(fù)雜的優(yōu)化方法,并且有一定量的參數(shù)需要設(shè)置。
超聲圖像在形成的過(guò)程中由于高頻波在不同聲阻抗的組織之間的邊界處發(fā)生了部分反射和透射,形成了一系列相干波,這些相干波互相干涉,從而產(chǎn)生了散斑噪聲[16-17]。通常認(rèn)為斑點(diǎn)噪聲是一種乘性噪聲,并服從瑞利分布[18]。然而,為了提高圖像的質(zhì)量,超聲成像儀在輸出之前對(duì)射頻信號(hào)進(jìn)行一系列的標(biāo)準(zhǔn)處理,例如非線(xiàn)性放大、對(duì)數(shù)壓縮、低通濾波、插值等運(yùn)算,這些操作可能改變了原始信號(hào)的統(tǒng)計(jì)特性[19]。目前,常用的斑點(diǎn)噪聲模型如下:
如前所述,NLMF算法在進(jìn)行超聲圖像斑點(diǎn)噪聲去除時(shí),由于在計(jì)算圖像塊之間的相似距離時(shí)存在大量重復(fù)運(yùn)算,使算法的運(yùn)行速度不夠快,所以本文首先提出了一種快速非局部平均濾波(Fast Non-Local Mean Filter, F-NLMF)算法,利用互相關(guān)濾波對(duì)算法進(jìn)行加速。
這樣就形成了快速非局部平均濾波算法。
在實(shí)驗(yàn)時(shí)發(fā)現(xiàn):圖像塊之間的相似度與匹配區(qū)域的大小和噪聲強(qiáng)度有關(guān)。如圖1所示:圖(a)是噪聲強(qiáng)度為5的模擬斑點(diǎn)噪聲圖像,選取圖像中兩個(gè)不同位置的像素點(diǎn),并以該像素點(diǎn)為中心,設(shè)置尺寸大小不同的圖像塊,如圖(b)、圖(c)所示,再分別計(jì)算每個(gè)圖像塊與其相鄰圖像塊之間的相似距離,結(jié)果如表1所示。可以看出:匹配區(qū)域的大小和噪聲強(qiáng)度都影響著相似距離的大小,這也直接影響到去斑效果。針對(duì)這個(gè)問(wèn)題,本文根據(jù)窗口參數(shù)和噪聲強(qiáng)度對(duì)濾波參數(shù)進(jìn)行自適應(yīng)調(diào)整。同時(shí)通過(guò)實(shí)驗(yàn)還發(fā)現(xiàn):窗口大?。ㄆヅ鋮^(qū)域和搜索區(qū)域大?。┖驮肼晱?qiáng)度都會(huì)影響去斑效果,若選擇單一的窗口區(qū)域,則去斑后的圖像會(huì)缺失較多的邊緣細(xì)節(jié)。為此本文設(shè)置了不同窗口區(qū)域大小,利用多尺度的方式將得到的不同效果的去斑結(jié)果圖進(jìn)行融合,以此來(lái)獲得更佳的去斑效果,具體如下。
圖1 模擬斑點(diǎn)噪聲圖像及其不同位置不同尺寸的圖像塊示意圖
表1 不同圖像塊尺寸下的相似距離d值
由上述可知:相似距離因噪聲強(qiáng)度和匹配區(qū)域的變化而改變,這使得相似權(quán)重發(fā)生變化,最終算法的去斑效果受到影響。為了減緩相似權(quán)重因噪聲強(qiáng)度和匹配區(qū)域的不同而帶來(lái)的改變,得到去斑效果較好的結(jié)果圖,本文對(duì)相似權(quán)重計(jì)算公式中的衰減參數(shù)進(jìn)行相應(yīng)的設(shè)置。通過(guò)大量實(shí)驗(yàn),最終將衰減參數(shù)設(shè)置為:
得到個(gè)濾波結(jié)果后,本文將其進(jìn)行融合,利用如下加權(quán)平均處理的方式得到最終去斑圖像:
為評(píng)價(jià)所提算法去除超聲圖像斑點(diǎn)噪聲的性能,本文使用了四種圖像質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn),包括峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)、特征相似度測(cè)度(Feature SIMilarity index, FSIM)、對(duì)比度噪聲比(Contrast-to-Noise Ratio, CNR)和信噪比(Signal-to-Noise Ratio, SNR)。
2)FSIM:是一種結(jié)構(gòu)相似度測(cè)度,用來(lái)測(cè)試兩幅圖像之間的特征相似性。FSIM主要以相位相似度和圖像梯度相似度來(lái)度量局部結(jié)構(gòu)的重要性,在評(píng)價(jià)質(zhì)量分?jǐn)?shù)階段,將相位相似度作為權(quán)值,增大了與人眼視覺(jué)感知的相關(guān)性,是一種較好的質(zhì)量評(píng)估方法,具體計(jì)算參見(jiàn)文獻(xiàn)[26]。
3)CNR和SNR:這兩個(gè)指標(biāo)主要用于在無(wú)參考圖像時(shí)做圖像質(zhì)量評(píng)價(jià),而本文研究的對(duì)象是超聲圖像,實(shí)際臨床中是沒(méi)有理想?yún)⒖紙D像的,因此需要用CNR和SNR進(jìn)行去斑后的圖像質(zhì)量評(píng)價(jià),相應(yīng)的計(jì)算公式如下:
圖2 測(cè)試圖像示例
表2 不同算法對(duì)帶斑點(diǎn)噪聲的“頭部”幻影圖像的去斑速度比較
為了定量評(píng)價(jià)本文MF-NLMF算法在去除斑點(diǎn)噪聲上的性能,利用圖2,將MF-NLMF算法與各向異性擴(kuò)散去斑法(Speckle Reducing Anisotropic Diffusion, SARD)、斑點(diǎn)抑制雙邊濾波法(Speckle Reducing Bilateral Filter, SRBF)、傳統(tǒng)塊模式非局部均值濾波法(Traditional Blockwise Non-Local Mean Filter, TBNLMF)、優(yōu)化貝葉斯非局部均值濾波(Optimized Bayesian Non-Local Means Filter, OBNLMF)、權(quán)重細(xì)化非局部均值濾波法(Weight Refining Non-Local Mean Filter,WRNLMF)和IBNLMF進(jìn)行對(duì)比。
4.3.1 “頭部”幻影圖像斑點(diǎn)噪聲去除實(shí)驗(yàn)
4.3.2 仿真超聲圖像去斑實(shí)驗(yàn)
針對(duì)圖2(b)的Field_Ⅱ仿真超聲圖像采用7種去斑算法進(jìn)行斑點(diǎn)噪聲去除,由于篇幅限制,本文僅展示“囊腫”仿真超聲圖像的去斑結(jié)果,如圖4所示。從圖中可以看出:SRAD、SRBF、TBNLMF算法所獲得的去斑圖像中剩余了較多的斑點(diǎn)噪聲,背景區(qū)域不光滑;WRNLMF、IBNLMF以及本文所提算法斑點(diǎn)噪聲去除得較為干凈,而本文MF-NLMF算法的結(jié)果圖中目標(biāo)區(qū)域的邊界更加平滑,背景區(qū)域更加均勻。
圖3 時(shí)各算法對(duì)含斑噪聲“頭部”幻影圖像的去斑結(jié)果
表3 不同算法對(duì)帶斑點(diǎn)噪聲的“頭部”幻影圖像進(jìn)行去斑的結(jié)果
為更加客觀地對(duì)去斑結(jié)果進(jìn)行比較分析,本文采用無(wú)參考圖像的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)CNR和SNR進(jìn)行結(jié)果評(píng)價(jià)。如圖4(a)所示,本文手動(dòng)選取出3對(duì)目標(biāo)區(qū)域和背景區(qū)域,且每一對(duì)中的目標(biāo)區(qū)域和背景區(qū)域是相鄰的,即圖中用紅色矩形框圈出的部分,然后計(jì)算不同去斑圖像相應(yīng)三對(duì)區(qū)域的CNR值和SNR值,結(jié)果如表4所示。從中可以看出:無(wú)論選擇哪個(gè)區(qū)域,本文MF-NLMF算法得到的目標(biāo)區(qū)域的CNR值和SNR值都是最大的,即去斑圖像質(zhì)量最好。
圖4 不同去斑算法對(duì)Field Ⅱ仿真“囊腫”超聲圖像的去效果
表4 不同算法對(duì)Field Ⅱ仿真“囊腫”超聲圖像的去斑定量結(jié)果 單位: dB
4.3.3 真實(shí)超聲圖像去斑實(shí)驗(yàn)
為評(píng)估本文MF-NLMF算法對(duì)真實(shí)超聲圖像的去斑效果,本文對(duì)3張真實(shí)超聲圖像進(jìn)行了去斑處理,如圖5所示。可以看出:本文方法不但可以消除絕大多數(shù)斑點(diǎn)噪聲,而且去斑圖像中器官內(nèi)部區(qū)域較為干凈,各器官的邊緣分界較為清楚,這將有利于醫(yī)生基于原始超聲圖像和去斑超聲圖像對(duì)病情的輔助診斷。
綜上所述,本文MF-NLMF算法對(duì)模擬斑點(diǎn)噪聲圖像、Field Ⅱ仿真超聲圖像和真實(shí)超聲圖像的去斑效果都較好。F-NLMF快速濾波算法的去斑速度至少為傳統(tǒng)NLMF算法的25.25倍,在此基礎(chǔ)上提出的MF-NLMF算法雖增加了一定的去斑次數(shù),但去斑效果得到了較明顯提升,并且MF-NLMF算法的時(shí)間消耗仍比其他去斑算法的時(shí)耗要少,獲得了去斑效果和時(shí)間性能的最佳平衡。
本文充分挖掘了經(jīng)典N(xiāo)LMF算法在超聲圖像斑點(diǎn)噪聲去除上的潛力,針對(duì)原始NLMF算法在時(shí)間復(fù)雜度和參數(shù)設(shè)置上的缺陷,對(duì)NLMF算法中時(shí)間耗費(fèi)最多的圖像塊之間相似度計(jì)算上進(jìn)行優(yōu)化,充分利用互相關(guān)濾波,減少了大量重復(fù)運(yùn)算,從而形成了快速算法;同時(shí)對(duì)NLMF算法中的衰減參數(shù)和窗口參數(shù)進(jìn)行了巧妙設(shè)置,提出了一種多尺度非局部平均濾波算法MF-NLMF,對(duì)多種窗口參數(shù)下的非局部平均濾波結(jié)果進(jìn)行加權(quán)平均處理,而且衰減參數(shù)根據(jù)窗口參數(shù)的不同而自適應(yīng)設(shè)置,從而融合了多種窗口參數(shù)下的濾波結(jié)果。
通過(guò)對(duì)模擬斑點(diǎn)噪聲圖像、仿真超聲圖像和真實(shí)超聲圖像進(jìn)行去斑測(cè)試,并與其他典型的超聲圖像去斑算法進(jìn)行比較,結(jié)果表明:本文MF-NLMF算法在速度和去斑效果上都有明顯優(yōu)勢(shì),較傳統(tǒng)NLMF算法速度提高了,PSNR值較其他去斑方法至少可以提高0.73 dB。將本文算法用于實(shí)際臨床超聲圖像的去斑,可以為醫(yī)生的診斷提供一定的輔助作用。
[1] 鄭淵悅,徐銘恩,王玲. 改進(jìn)權(quán)值非局部均值超聲圖像去噪[J]. 中國(guó)圖象圖形學(xué)報(bào), 2017, 22(6):778-786.(ZHENG Y Y, XU M E, WANG L. Improved weighted non-local means ultrasonic image denoising algorithm[J]. Journal of Image and Graphics, 2017, 22(6):778-786.)
[2] 沈民奮,陳婷婷,張瓊,等. 醫(yī)用超聲圖像散斑去噪方法綜述[J]. 中國(guó)醫(yī)療器械信息, 2013, 19(3):17-22.(SHEN M F, CHEN T T, ZHANG Q, et al. The review of speckle denoising in medical ultrasound imaging[J]. China Medical Device Information, 2013, 19(3): 17-22.)
[3] 江勇,張曉玲,師君. 極化SAR改進(jìn)Lee濾波相干斑抑制研究[J]. 電子科技大學(xué)學(xué)報(bào), 2009, 38(1):5-8.(JIANG Y, ZHANG X L, SHI J. Speckle reduction for polarimetric SAR images by improved Lee filter[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(1): 5-8.)
[4] 楊婧瑋,李賀,王智超. 改進(jìn)Frost算子在SAR圖像斑點(diǎn)噪聲抑制中的應(yīng)用[J]. 測(cè)繪科學(xué)技術(shù)學(xué)報(bào), 2009, 26(4):280-282, 287.(YANG J W, LI H, WANG Z C. Application of SAR image de-speckling method based on improved Frost filer[J]. Journal of Geomatics Science and Technology, 2009, 26(4): 280-282, 287.)
[5] AKL A, TABBARA K, YAACOUB C. An enhanced Kuan filter for suboptimal speckle reduction[C]// Proceedings of the 2nd International Conference on Advances in Computational Tools for Engineering Applications. Piscataway: IEEE, 2012: 91-95.
[6] LOUPAS T, McDICKEN W N, ALLAN P L. An adaptive weighted median filter for speckle suppression in medical ultrasonic images[J]. IEEE Transaction on Circuits and Systems, 1989, 36(1):129-135.
[7] MA X S, SHEN H F, ZHANG L P, et al. Adaptive anisotropic diffusion method for polarimetric SAR speckle filtering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1041-1050.
[8] RAMOS-LLORDéN G, VEGAS-SáNCHEZ-FERRERO G, MARTíN-FERNáNDEZ M, et al. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images[J]. IEEE Transactions on Image Processing, 2015, 24(1): 345-358.
[9] PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639.
[10] YU Y J, ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260-1270.
[11] 付曉薇,楊雪飛,陳芳,等. 一種基于深度學(xué)習(xí)的自適應(yīng)醫(yī)學(xué)超聲圖像去斑方法[J]. 電子與信息學(xué)報(bào), 2020, 42(7):1782-1789.(FU X W, YANG X F, CHEN F, et al. An adaptive medical ultrasound images despeckling method based on deep learning[J]. Journal of Electronics and Information Technology, 2020,42(7):1782-1789.)
[12] OVIREDDY S, MUTHUSAMY E. Speckle suppressing anisotropic diffusion filter for medical ultrasound image[J]. Ultrasonic Imaging, 2014, 36(2): 112-132.
[13] ZHANG J, LIN G K, WU L L, et al. Speckle filtering of medical ultrasonic images using wavelet and guided filter[J]. Ultrasonics, 2016, 65: 177-193.
[14] JIANG J, JIANG L W, SANG N. Non-local sparse models for SAR image despeckling[C]// Proceedings of the 2012 International Conference on Computer Vision in Remote Sensing. Piscataway: IEEE, 2012: 230-236.
[15] ZHANG Y S, ZHAO Y C, JI K F, et al. SAR image despeckling by iterative non-local low-rank constraint[C]// Proceedings of the 2016 Progress in Electromagnetic Research Symposium. Piscataway: IEEE, 2016: 3564-3568.
[16] COUPE P, HELLIER P, KERVRANN C, et al. Nonlocal means-based speckle filtering for ultrasound images[J]. IEEE Transactions Image Processing, 2009, 18(10): 2221-2229.
[17] SUDEEP P V, PALANISAMY P, RAJAN J, et al. Speckle reduction in medical ultrasound images using an unbiased non-local means method[J]. Biomedical Signal Processing and Control, 2016, 28: 1-8.
[18] 劉春明,張相芬,陳武凡. 基于小波的醫(yī)學(xué)超聲圖像斑點(diǎn)噪聲抑制方法[J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志, 2006, 23(5): 364-367, 394.(LIU C M, ZHANG X F, CHEN W F. Wavelet-based method for speckle reduction in medical ultrasound image[J]. Chinese Journal of Medical Physics, 2006, 23(5): 364-367, 394.)
[19] 方宏道,周穎玥,林茂松. 基于貝葉斯非局部平均濾波的超聲圖像斑點(diǎn)噪聲抑制算法[J]. 計(jì)算機(jī)應(yīng)用, 2018, 38(3):848-853, 872.(FANG H D, ZHOU Y Y, LIN M S. Speckle suppression algorithm for ultrasound image based on Bayesian nonlocal means filtering[J]. Journal of Computer Applications, 2018, 38(3):848-853, 872.)
[20] 胡靜波. 改進(jìn)的中值濾波去噪算法分析[J]. 信息技術(shù), 2011, 35(8):32-33, 36.(HU J B. Analysis of improved median filtering de-noising algorithm[J]. Information Technology, 2011, 35(8):32-33, 36.)
[21] ZHAN Y, DING M Y, WU L X, et al. Nonlocal means method using weight refining for despeckling of ultrasound images[J]. Signal Processing, 2014, 103: 201-213.
[22] ZHOU Y Y, ZANG H B, XU S, et al. An iterative speckle filtering algorithm for ultrasound images based on Bayesian nonlocal means filter model[J]. Biomedical Signal Processing and Control, 2019, 48: 104-117
[23] 邢笑笑,王海龍,李健,等. 漸近非局部平均圖像去噪算法[J]. 自動(dòng)化學(xué)報(bào), 2020, 46(9):1952-1960.(XING X X, WANG H L, LI J, et al. Asymptotically non-local average image denoising algorithm[J]. Acta Automatica Sinica, 2020, 46(9):1952-1960.)
[24] JENSEN J A. Simulation of advanced ultrasound systems using Field Ⅱ[C]// Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro. Piscataway: IEEE, 2004: 636-639.
[25] Field Ⅱ simulation program [EB/OL]. (2012-04-30)[2021-02-19]. http://field-ii.dk/?examples/cyst_phantom/cyst_phantom.html.
[26] 張中興,劉慧,郭強(qiáng),等. 結(jié)合非局部低秩先驗(yàn)的圖像超分辨重建概率模型[J]. 計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào), 2021, 33(1):142-152.(ZHANG Z X, LIU H, GUO Q, et al. Super-resolution reconstruction using probability model combined with nonlocal low-rank prior[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(1):142-152.)
Speckle removal algorithm for ultrasonic image based on multi-scale fast non-local means filtering
LEI Lulu1,2, ZHOU Yingyue1,2*, LI Chi1,2, WANG Xinyu1,2, ZHAO Jiaqi1,2
(1,,621010,;2(),621010,)
Ultrasound imaging is widely used in clinical diagnosis because of its advantages of convenience, low cost and non-radiation, however, speckle noise in the image may adversely affect clinical diagnosis or subsequent image analysis.As a typical denoising technology, when using Non-Local Means Filter(NLMF)for speckle removal of ultrasonic image,there will be shortcomings such as high time consumption and difficulty in setting filtering parameters. Therefore, a Multi-scale Fast Non-Local Means Filter (MF-NLMF) algorithm was proposed to remove speckle noise of ultrasonic image. A Fast NLMF (F-NLMF) algorithm was first give out to reduce the computing time by using the mutual correlation filtering technique. Then multiple window parameters were set to obtain multiple speckle removal results, and the model parameters were able to be adjusted adaptively according to the window size. The final speckle removal image was obtained by fusing the multiple speckle removal results. Experimental results show that under the same experimental conditions, the F-NLMF algorithm reduces the computing time by at least 96.04% compared with the traditional NLMF algorithm. Compared with other six algorithms such as Iterative Bayesian Non-Local Mean Filtering (IBNLMF), the proposed MF-NLMF has the speckle removal image with the Peak Signal-to-Noise Ratio (PSNR) value improved by more than 0.73 dB, the Feature SIMilarity index (FSIM) value increased by more than 0.011, the Contrast-to-Noise Ratio (CNR) and Signal-to-Noise Ratio (SNR) values raised by more than 0.000 5 and 0.001 6 respectively.
speckle noise; Non-Local Means Filter (NLMF); multi-scale; adaptive; fast filter
This work is partially supported by National Natural Science Foundation of China (61401379), Key Research and Development Project of Science and Technology Department of Sichuan Province (2021YFG0383), LongShan Academic Talent Research Support Program of Southwest University of Science and Technology (17LZX648, 18LZX611).
LEI Lulu, born in 1997, M. S. candidate. Her research interests include image restoration.
ZHOU Yingyue, born in 1983, Ph. D., associate research fellow. Her research interests include image processing and analysis.
LI Chi, born in 1998, M. S. candidate. His research interests include digital image processing.
WANG Xinyu, born in 1997, M. S. candidate. His research interests include artificial intelligence.
ZHAO Jiaqi, born in 1998, M. S. candidate. His research interests include artificial intelligence.
TP391.41
A
1001-9081(2022)06-1950-07
10.11772/j.issn.1001-9081.2021040620
2021?04?20;
2021?07?01;
2021?07?20。
國(guó)家自然科學(xué)基金資助項(xiàng)目(61401379);四川省科技廳重點(diǎn)研發(fā)項(xiàng)目(2021YFG0383);西南科技大學(xué)龍山學(xué)術(shù)人才科研支持計(jì)劃項(xiàng)目(17LZX648, 18LZX611)。
雷露露(1997—),女,四川廣安人,碩士研究生,主要研究方向:圖像恢復(fù);周穎玥(1983—),女,四川馬爾康人,副研究員,博士,主要研究方向:圖像處理與分析;李馳(1998—),男,四川成都人,碩士研究生,主要研究方向:數(shù)字圖像處理;王欣宇(1997—),男,四川德陽(yáng)人,碩士研究生,主要研究方向:人工智能;趙家琦(1998—),男,四川成都人,碩士研究生,主要研究方向:人工智能。