亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于觀測(cè)器的時(shí)滯離散時(shí)間馬爾可夫跳變系統(tǒng)有限時(shí)間H∞控制

        2022-04-27 10:18:20魏雪雪劉凝哲劉西奎李艷
        關(guān)鍵詞:馬爾可夫時(shí)滯觀測(cè)器

        魏雪雪,劉凝哲,劉西奎,,李艷

        (1. 山東科技大學(xué) 數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院, 山東 青島 266590;2.中國(guó)礦業(yè)大學(xué)(北京) 機(jī)電與信息工程學(xué)院, 北京 100083;3.山東科技大學(xué) 電氣信息系,山東 濟(jì)南 250031)

        馬爾可夫跳變系統(tǒng)(MJSs)是一類(lèi)由多個(gè)子系統(tǒng)組成的混合系統(tǒng),每一個(gè)模態(tài)對(duì)應(yīng)一個(gè)確定的子系統(tǒng),模態(tài)間的切換由馬爾可夫隨機(jī)過(guò)程決定[1-6]。MJSs可以用來(lái)建模具有結(jié)構(gòu)突變的動(dòng)力學(xué)系統(tǒng),在實(shí)際中有著廣泛的應(yīng)用,如Dong等[7]研究了具有傳感器飽和的離散時(shí)間馬爾可夫跳變系統(tǒng)的故障檢測(cè)問(wèn)題;Shi等[8]利用李雅普諾夫函數(shù)理論和凸多面體技術(shù),研究了不確定離散時(shí)間奇異MJSs的故障檢測(cè)濾波器設(shè)計(jì)問(wèn)題;Liu等[9]提出了一種新的基于動(dòng)態(tài)輸出反饋的異步控制器,研究了網(wǎng)絡(luò)化MJSs的異步H∞控制問(wèn)題。此外,MJSs在網(wǎng)絡(luò)[10-12]、采樣[13-15]、滑模[16-18]、容錯(cuò)[19-21]等控制系統(tǒng)中也有著重要的應(yīng)用。對(duì)于MJSs,其穩(wěn)定性研究是一項(xiàng)最基本的問(wèn)題。然而,由于時(shí)滯廣泛存在于各種系統(tǒng)之中,導(dǎo)致系統(tǒng)性能變差,甚至不穩(wěn)定。因此,具有時(shí)滯的MJSs引起了學(xué)者的廣泛關(guān)注,取得了眾多的研究成果,如Du等[22]研究了具有時(shí)滯的MJSs的異步控制方法;Zhuang等[23]研究了帶有時(shí)變時(shí)滯的中立型MJSs的非脆弱時(shí)滯反饋控制問(wèn)題;Fang等[24]通過(guò)設(shè)計(jì)一種新型的切換滑面函數(shù),研究了帶有時(shí)滯的非線性MJSs的滑??刂茊?wèn)題;更多關(guān)于時(shí)滯MJSs的研究成果可見(jiàn)文獻(xiàn)[25-29]。

        眾所周知,李雅普諾夫穩(wěn)定性理論研究無(wú)限時(shí)間間隔上系統(tǒng)的漸近穩(wěn)定性。然而,在許多實(shí)際應(yīng)用中,需要更加關(guān)注系統(tǒng)在有限時(shí)間間隔內(nèi)的暫態(tài)性能,例如,過(guò)大的瞬時(shí)電壓會(huì)對(duì)電力系統(tǒng)造成損壞[30];海浪會(huì)對(duì)欠驅(qū)動(dòng)船舶的航向角造成影響,使得船舶偏離預(yù)設(shè)路徑[31];擾動(dòng)會(huì)影響有限時(shí)間內(nèi)航天器的姿態(tài)[32]。基于上述類(lèi)似問(wèn)題,Dorato[33]在1961年首次提出有限時(shí)間穩(wěn)定(finite-time stability,F(xiàn)TS)這一概念。不同于李雅普諾夫意義下的穩(wěn)定性,F(xiàn)TS描述的是有限時(shí)間區(qū)間上系統(tǒng)的暫態(tài)性能,即在固定的時(shí)間間隔內(nèi),系統(tǒng)的狀態(tài)不會(huì)超過(guò)某個(gè)確定的閾值,已經(jīng)取得許多關(guān)于FTS的研究成果[34-38]。在實(shí)現(xiàn)系統(tǒng)FTS后,需要抑制干擾對(duì)系統(tǒng)的影響,而H∞控制可以解決此問(wèn)題。因此,學(xué)者在FTS的基礎(chǔ)上又引入了H∞控制,以確保閉環(huán)系統(tǒng)有限時(shí)間穩(wěn)定且干擾滿足一定的抑制水平,從而得到了有限時(shí)間H∞有界的概念。如Chen等[39]研究了具有區(qū)間時(shí)變時(shí)滯的離散時(shí)變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Ju等[40]研究了事件觸發(fā)下線性中立半馬爾可夫跳變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Liu等[41]研究了狀態(tài)相關(guān)不確定系統(tǒng)的有限時(shí)間H∞濾波問(wèn)題。雖然已經(jīng)取得許多有限時(shí)間H∞控制的研究結(jié)果,但是對(duì)于離散時(shí)間馬爾可夫跳變系統(tǒng)(DMJSs)的有限時(shí)間H∞控制問(wèn)題有待研究,這是本文研究的主要內(nèi)容。

        此外,上述的研究成果都是在假設(shè)系統(tǒng)狀態(tài)可測(cè)量的情況下進(jìn)行的,然而在實(shí)際中,由于技術(shù)、成本等因素的影響,系統(tǒng)的狀態(tài)不一定可以完全得到。而基于觀測(cè)器的控制器則可以克服此困難,所以最近幾年,基于觀測(cè)器的控制方法受到了學(xué)者的廣泛關(guān)注。如Tan等[42]研究了量化和隨機(jī)網(wǎng)絡(luò)攻擊下基于觀測(cè)器的互聯(lián)模糊系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Gao等[43]研究了基于觀測(cè)器的不確定離散時(shí)間非齊次馬爾可夫跳變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Zhang等[44]研究了基于觀測(cè)器的離散時(shí)間齊次馬爾可夫跳變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題。然而,鮮有文獻(xiàn)對(duì)基于觀測(cè)器的DMJSs的有限時(shí)間H∞控制問(wèn)題進(jìn)行研究。本文將考慮基于觀測(cè)器的時(shí)滯DMJSs的有限時(shí)間H∞控制問(wèn)題,即設(shè)計(jì)基于觀測(cè)器的狀態(tài)反饋控制器使閉環(huán)誤差系統(tǒng)有限時(shí)間有界且滿足規(guī)定的干擾衰減水平。

        1 定義和系統(tǒng)描述

        記號(hào):Rn,Rn×m,N分別表示n維實(shí)向量,n×m維實(shí)矩陣和非負(fù)整數(shù)集;A>0(A<0)表示A是正定(負(fù)定)矩陣;E{·}表示某種概率測(cè)度P的數(shù)學(xué)期望;*表示矩陣中的對(duì)稱項(xiàng);diag{…}表示塊對(duì)角矩陣;σmin(A)和σmax(A)分別表示矩陣A的最小和最大特征值;MT和M-1分別表示矩陣M的轉(zhuǎn)置和逆矩陣。如果矩陣的維數(shù)沒(méi)有說(shuō)明,則認(rèn)為矩陣與代數(shù)運(yùn)算是相容的。

        考慮如下時(shí)滯DMJSs:

        x(k+1)=A1(rk)x(k)+Ad1(rk)x(k-d)+

        B1(rk)u(k)+C1(rk)v(k)+[A2(rk)x(k)+

        Ad2(rk)x(k-d)+B2(rk)u(k)+

        C2(rk)v(k)]w(k),

        (1)

        y(k)=D(rk)x(k)+G(rk)u(k),

        (2)

        z(k)=D1(rk)x(k)+Dd(rk)x(k-d)+

        G1(rk)u(k)+G2(rk)v(k),

        (3)

        x(n)=φ(n),n∈{-d,…,0},

        (4)

        外部干擾v(k)滿足

        (5)

        定義如下基于觀測(cè)器的狀態(tài)反饋控制器:

        (6)

        (7)

        (8)

        (9)

        (10)

        G2(l)v(k),

        (11)

        式中

        定義1如果系統(tǒng)(10) (u(k)=0,v(k)=0)滿足

        (12)

        (13)

        引理1(舒爾補(bǔ)引理)[45]對(duì)于實(shí)矩陣N,MT=M,RT=R>0,有

        本文的主要目的是設(shè)計(jì)一個(gè)形如式(6)—(9)的基于觀測(cè)器的狀態(tài)反饋控制器,保證閉環(huán)誤差DMJSs (10)和(11)有限時(shí)間H∞有界。

        2 有限時(shí)間H∞控制分析

        本節(jié)討論系統(tǒng)(1)—(4)的基于觀測(cè)器的有限時(shí)間H∞控制問(wèn)題,以線性矩陣不等式的形式給出閉環(huán)誤差系統(tǒng)(10)和(11)有限時(shí)間有界,且控制輸出z(k)和外部干擾v(k)滿足條件(13)的充分條件。

        (14)

        (15)

        證明定義如下Lyapunov-Krasovskii函數(shù)

        經(jīng)計(jì)算,可得

        V(k+1,rk+1=m)-V(k,rk=l)=

        (16)

        其中

        根據(jù)引理1,可以證明條件(14)等價(jià)于

        <0。

        (17)

        (18)

        對(duì)條件(18)應(yīng)用引理1,可以得到

        (19)

        <0。

        (20)

        根據(jù)條件(16)和(20),得

        E{V(k+1,rk+1=m)-V(k,rk=l)}<

        從而

        E{V(k+1,rk+1=m)}<δE{V(k,rk=l)}+

        (21)

        E{V(k)}<δkE{V(0,r0=h)}+

        (22)

        i∈{-d,…,0} ,則

        (23)

        (24)

        根據(jù)條件(22)—(24),得

        由條件(15)可得

        考慮上述Lyapunov-Krasovskii函數(shù),則有

        E{V(k+1,rk+1=m)}<δE{V(k,rk=l)}-

        (25)

        E{V(k,rk=l)}<δkE{V(0,r0=h)}-

        (26)

        因?yàn)閂(k,rk=l)≥0,k∈N,在零初始條件下,根據(jù)條件(26)可以得到

        (27)

        又δ≥1,根據(jù)條件(27)

        (28)

        注1當(dāng)w(k)=0時(shí),定理1即為文獻(xiàn)[44]的定理3;當(dāng)w(k)=d=0時(shí),定理1即為文獻(xiàn)[43]的定理2。

        3 有限時(shí)間H∞控制器設(shè)計(jì)

        定理2考慮時(shí)滯DMJSs(10)和(11),如果存在標(biāo)量δ≥1,η>0,τ>0,ξ1>0,ξ2>0,γ>0, 矩陣J>0,正定矩陣X(l),矩陣Y(l)、F(l)和非奇異矩陣Z(l),對(duì)任意l∈S,使得下式成立

        D(l)X(l)=Z(l)D(l),

        (29)

        (30)

        ηR-1(l)

        (31)

        ξ1R-1(l)

        (32)

        (33)

        (34)

        因此,條件(29)和(30)能保證(14)成立。

        (35)

        注2當(dāng)w(k)=0時(shí),定理2退化為文獻(xiàn)[44]的定理4;當(dāng)w(k)=d=0時(shí),定理2即為文獻(xiàn)[43]的定理3。

        注3條件(29)無(wú)法用線性矩陣不等式的方法求解,為了解決這個(gè)問(wèn)題,將(29)轉(zhuǎn)化為條件

        (36)

        式中λ是給定的足夠小的常數(shù)。 根據(jù)引理1,條件(36)等價(jià)于下列線性矩陣不等式

        (37)

        注4條件(30)和(33)不是嚴(yán)格的線性矩陣不等式,但是,如果固定參數(shù)δ,上述條件就可以轉(zhuǎn)化為基于線性矩陣不等式的可行性問(wèn)題。因此,定理2中的可行性問(wèn)題可以轉(zhuǎn)化為下述具有固定參數(shù)δ的可行性問(wèn)題:

        min(τ2+γ2)

        s.t. LMIs (30)—(33)和(37)。

        注5基于上述討論可知,當(dāng)δ=1時(shí),如果可以求得可行解,則可以證明本文所設(shè)計(jì)的有限時(shí)間H∞控制器可以保證時(shí)滯DMJSs有限時(shí)間有界和有限時(shí)間穩(wěn)定。

        4 數(shù)值算例

        本節(jié)將通過(guò)改進(jìn)的害蟲(chóng)種群結(jié)構(gòu)動(dòng)態(tài)模型[46]證明本文所提方法的有效性。由于天敵數(shù)量、環(huán)境溫度的突然變化,害蟲(chóng)種群的出生率、死亡率會(huì)發(fā)生改變,假設(shè)這些突然變化滿足馬爾可夫跳變規(guī)律;另一方面,害蟲(chóng)種群當(dāng)前的數(shù)量受到過(guò)去數(shù)量的影響,將過(guò)去數(shù)量的影響描述為時(shí)滯。因此,改進(jìn)的害蟲(chóng)種群結(jié)構(gòu)動(dòng)態(tài)模型可描述為形如(1)—(4)的系統(tǒng),其中x1(k),x2(k),x3(k)分別表示在k時(shí)刻幼年害蟲(chóng)、未成熟害蟲(chóng)和成熟害蟲(chóng)的數(shù)量;u(k)表示人為對(duì)害蟲(chóng)種群數(shù)量的干預(yù),如引進(jìn)捕食者、噴灑殺蟲(chóng)劑等;v(k)表示從其他區(qū)域遷移至此區(qū)域的害蟲(chóng)的數(shù)量;z(k)表示該區(qū)域害蟲(chóng)的總數(shù)量;w(k)表示該區(qū)域的氣溫、降雨量等因素。

        考慮具有兩個(gè)模態(tài)的害蟲(chóng)種群結(jié)構(gòu)動(dòng)態(tài)模型,系數(shù)矩陣為

        模態(tài)1:

        G(1)=1,G1(1)=0.06,G2(1)=0;

        模態(tài)2:

        G(2)=1,G1(2)=0.05,G2(2)=0。

        圖1 τ和γ的局部最優(yōu)界

        圖2 初始模態(tài)為1的系統(tǒng)(10)的切換信號(hào)

        由定理2得τ=150.414 6,γ=105.952 6,反饋控制增益及觀測(cè)器增益分別為:

        圖3 系統(tǒng)狀態(tài)的響應(yīng)

        圖4 估計(jì)狀態(tài)的響應(yīng)

        圖的演化

        5 結(jié)束語(yǔ)

        本文通過(guò)構(gòu)造李雅普諾夫函數(shù)并結(jié)合線性矩陣不等式,設(shè)計(jì)了基于觀測(cè)器的時(shí)滯離散時(shí)間馬爾可夫跳變系統(tǒng)狀態(tài)反饋控制器,給出了閉環(huán)誤差系統(tǒng)有限時(shí)間有界并滿足H∞性能指標(biāo)的充分條件。此外,利用本文提出的設(shè)計(jì)方法可以研究離散時(shí)間模糊系統(tǒng)的有限時(shí)間H∞控制問(wèn)題。

        猜你喜歡
        馬爾可夫時(shí)滯觀測(cè)器
        帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
        保費(fèi)隨機(jī)且?guī)в屑t利支付的復(fù)合馬爾可夫二項(xiàng)模型
        基于觀測(cè)器的列車(chē)網(wǎng)絡(luò)控制
        基于非線性未知輸入觀測(cè)器的航天器故障診斷
        基于SOP的核電廠操縱員監(jiān)視過(guò)程馬爾可夫模型
        應(yīng)用馬爾可夫鏈對(duì)品牌手機(jī)市場(chǎng)占有率進(jìn)行預(yù)測(cè)
        基于干擾觀測(cè)器的PI控制單相逆變器
        一階非線性時(shí)滯微分方程正周期解的存在性
        一類(lèi)時(shí)滯Duffing微分方程同宿解的存在性
        采用干擾觀測(cè)器PI控制的單相SPWM逆變電源
        国产系列丝袜熟女精品视频| 亚洲乱亚洲乱妇| 中文字幕久无码免费久久| 8av国产精品爽爽ⅴa在线观看| 亚洲一区二区三区国产精品视频| 国产手机在线观看一区二区三区| 亚洲国产精品久久人人爱| 亚洲一区欧美二区| 免费观看成人稀缺视频在线播放| 国产自产二区三区精品| 成人aaa片一区国产精品| 亚洲图区欧美| 中文字幕亚洲精品第一页| 国产剧情一区二区三区在线| 国产揄拍国产精品| 特黄aa级毛片免费视频播放| 少妇一区二区三区乱码| 日本高清一级二级三级| 五十路丰满中年熟女中出| 亚洲成a∨人片在线观看无码| 在线女同免费观看网站| 亚洲av永久无码精品一福利| 18禁美女裸身无遮挡免费网站 | 五月av综合av国产av| 精品爆乳一区二区三区无码av| 国产永久免费高清在线观看视频| 国产精品一区二区三区av在线| 国产超碰人人做人人爽av大片| 亚洲 都市 校园 激情 另类| 中文字幕人妻少妇美臀| 日本伦理精品一区二区三区| 国产精品免费精品自在线观看 | 男女干逼视频免费网站| 日韩亚洲精品中文字幕在线观看| 国产美女久久精品香蕉69| 69av视频在线| 91九色视频在线国产| 欧美性受xxxx狂喷水| 亚洲日韩精品A∨片无码加勒比| 在线视频自拍视频激情| 久久久久久久极品内射|