亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        紅壤坡耕地耕層土壤質(zhì)量退化特征及障礙因子診斷

        2019-12-19 01:41:56金慧芳史東梅鐘義軍黃尚書(shū)
        關(guān)鍵詞:耕層紅壤坡耕地

        金慧芳,史東梅,鐘義軍,黃尚書(shū),宋 鴿,段 騰

        紅壤坡耕地耕層土壤質(zhì)量退化特征及障礙因子診斷

        金慧芳1,史東梅1※,鐘義軍2,黃尚書(shū)2,宋 鴿1,段 騰1

        (1. 西南大學(xué)資源環(huán)境學(xué)院,重慶 400715;2. 江西省紅壤研究所,國(guó)家紅壤改良工程研究中心,南昌 331700)

        坡耕地耕層質(zhì)量退化是在土壤侵蝕等自然因素和農(nóng)業(yè)耕作等人為因素綜合作用下,在坡面尺度上耕層土壤剖面損毀、土壤養(yǎng)分貧瘠化、農(nóng)作物-環(huán)境調(diào)控能力衰退或完全喪失的農(nóng)業(yè)生態(tài)過(guò)程。該文以紅壤小流域坡耕地耕層為研究對(duì)象,采用耕層質(zhì)量退化指數(shù)法(cultivated-layer degradation index, CLDI)分析了坡耕地耕層質(zhì)量退化特征,基于主成分分析法明確了耕層退化的主導(dǎo)因素及關(guān)鍵驅(qū)動(dòng)因子,采用障礙因子診斷模型界定了坡耕地耕層質(zhì)量主要障礙因素及障礙程度。結(jié)果表明:紅壤小流域坡耕地耕層質(zhì)量以中、輕度退化程度為主(樣點(diǎn)占比70.4%),重度退化耕層樣點(diǎn)占比11.1%,無(wú)退化耕層樣點(diǎn)占比18.5%;導(dǎo)致坡耕地耕層質(zhì)量退化的人為驅(qū)動(dòng)因素有單位坡耕地面積農(nóng)業(yè)投入、耕作方式、單位坡耕地面積機(jī)械總動(dòng)力和單位坡耕地面積化肥施用量。隨耕層退化程度加劇,耕層土壤pH值呈先大幅減小后趨于平穩(wěn)的變化趨勢(shì),輕度退化耕層土壤pH值降低幅度可達(dá)9.8%;與無(wú)退化程度相比,不同退化程度下紅壤坡耕地耕層厚度呈逐步薄化趨勢(shì),重度退化耕層薄化率可達(dá)8.9%,這與降雨侵蝕和農(nóng)戶耕作方式不合理因素有關(guān)。紅壤坡耕地耕層質(zhì)量主要障礙因素表現(xiàn)為土壤黏粒含量多、pH值小、耕層薄化和土壤抗剪強(qiáng)度小,平均障礙度分別為0.15、0.14、0.13和0.10;土壤黏粒含量、pH值和耕層厚度障礙度隨退化程度加劇呈增大趨勢(shì),土壤抗剪強(qiáng)度障礙度呈逐漸減小趨勢(shì),其他耕層土壤屬性參數(shù)障礙度無(wú)明顯變化;適度深松(30~48 cm)與合理施肥是改善耕層質(zhì)量的有效措施。研究結(jié)果可為科學(xué)認(rèn)識(shí)紅壤坡耕地耕層質(zhì)量退化特征,明確耕層質(zhì)量改善途徑及合理耕層構(gòu)建提供參考。

        土壤;退化;診斷;耕層質(zhì)量;障礙因子;紅壤坡耕地

        0 引 言

        紅壤坡耕地是中國(guó)南方丘陵區(qū)重要的耕地資源之一,是研究區(qū)經(jīng)濟(jì)和糧食作物的重要基地[1]。長(zhǎng)期以來(lái),嚴(yán)重的春蝕秋旱,加上農(nóng)戶不合理耕作和施肥等自然和人為因素的影響,紅壤坡耕地面臨水土流失嚴(yán)重,養(yǎng)分劣化,耕層變薄,地力衰退以及生態(tài)環(huán)境惡化等問(wèn)題。研究南方紅壤丘陵區(qū)這一生態(tài)脆弱區(qū)域坡耕地耕層質(zhì)量退化特征并明確造成耕層質(zhì)量退化的主要障礙因子,對(duì)坡耕地質(zhì)量恢復(fù)、資源利用及合理耕層構(gòu)建具有重要意義[2]。紅壤坡耕地耕層質(zhì)量退化主要表現(xiàn)為侵蝕退化、養(yǎng)分退化和土壤酸化等,耕作措施、工程措施、林草措施和綜合治理措施是防治紅壤坡耕地退化的關(guān)鍵技術(shù)[3],而準(zhǔn)確判定紅壤坡耕地耕層質(zhì)量退化程度及主要障礙因子是促進(jìn)耕層質(zhì)量改良和地力提升的前提。Adejuwon等[4]最早提出土壤退化指數(shù)(soil degradation index,SDI),用于定量反映土壤質(zhì)量退化程度,被國(guó)內(nèi)外學(xué)者廣泛應(yīng)用[5-7],該模型假設(shè)各因素對(duì)土壤質(zhì)量退化影響程度相同,即各因素貢獻(xiàn)率相同。近年來(lái),有學(xué)者運(yùn)用土壤質(zhì)量指數(shù)(soil quality index,SQI)對(duì)土壤質(zhì)量退化特征進(jìn)行分析,且得到較好運(yùn)用[8-9],但該模型多用于土壤質(zhì)量評(píng)價(jià)研究,而在土壤質(zhì)量退化特征評(píng)價(jià)時(shí)缺乏參考基準(zhǔn),應(yīng)用較少。桂東偉等[10]將2種方法相結(jié)合,分析了綠洲化進(jìn)程加劇過(guò)程中,不同土地利用方式對(duì)土壤質(zhì)量的影響。張孝存[11]分別用2種方法分析了東北黑土區(qū)侵蝕土壤質(zhì)量特征。耕層是人類(lèi)為栽培作物,利用工具對(duì)土壤進(jìn)行擾動(dòng)的深度層,對(duì)協(xié)調(diào)土壤水、肥、氣、熱間相互作用,滿足作物生長(zhǎng)發(fā)育具有重要作用,耕層質(zhì)量退化是各土壤屬性參數(shù)變化綜合作用的結(jié)果,且不同土壤屬性參數(shù)變化對(duì)耕層質(zhì)量退化影響程度不同。目前,關(guān)于坡耕地耕層質(zhì)量退化特征評(píng)價(jià)的研究較少,且尚無(wú)統(tǒng)一方法。本文以南方丘陵區(qū)紅壤小流域坡耕地耕層土壤為研究對(duì)象,選擇反映耕層抗侵蝕性能、生產(chǎn)性能和耕作性能3方面的土壤屬性參數(shù)建立耕層退化質(zhì)量評(píng)價(jià)體系,對(duì)前人評(píng)價(jià)模型進(jìn)行修訂,采用耕層質(zhì)量退化指數(shù)(cultivated-layer degradation index,CLDI),對(duì)紅壤坡耕地耕層質(zhì)量退化特征進(jìn)行定量分析;采用主成分分析法辨識(shí)耕層退化主導(dǎo)因素和關(guān)鍵驅(qū)動(dòng)因子,分析不同退化程度下耕層土壤屬性參數(shù)變化特征;引入障礙因子診斷模型,進(jìn)一步明確耕層質(zhì)量改善的主要障礙因子,以期為抑制紅壤坡耕地水土流失、耕層質(zhì)量退化,促進(jìn)耕層質(zhì)量改良和合理耕層培育提供科學(xué)依據(jù)和參數(shù)支持。

        1 材料與方法

        1.1 研究區(qū)概況

        研究區(qū)位于江西省南昌市進(jìn)賢縣三和紅壤小流域,地處116°12′~116°18′E,28°12′~28°18′N(xiāo),流域面積41.21 km2,其中坡耕地面積1 672.92 hm2,屬亞熱帶季風(fēng)濕潤(rùn)氣候區(qū),年平均氣溫17.5 ℃。降雨量充沛且集中,多年平均年降水量達(dá)1 587 mm;多年無(wú)霜期282 d,多年平均日照時(shí)數(shù)達(dá)1 780 h。地貌類(lèi)型以低丘崗阜為主,坡度為2°~35°,紅壤為小流域內(nèi)分布最為廣泛的土壤類(lèi)型,土層深厚,土壤呈弱酸性,質(zhì)地為壤質(zhì)黏土。成土母質(zhì)以第四紀(jì)紅色黏土和紅砂巖類(lèi)為主。常見(jiàn)種植制度有花生-玉米/甘蔗輪作、花生-油菜輪作、大豆-甘薯輪作等,以一年一熟或一年兩熟制為主,近年來(lái),三熟制開(kāi)始增多。

        1.2 樣品采集與分析

        1.2.1 樣點(diǎn)設(shè)置

        于2017年7月在當(dāng)?shù)剞r(nóng)業(yè)部門(mén)有經(jīng)驗(yàn)的研究人員協(xié)助下,根據(jù)小流域坡耕地分布特點(diǎn),在流域上游、中游和下游各選擇2個(gè)坡耕地廣泛分布的區(qū)域,在每個(gè)區(qū)域分別選擇3個(gè)紅壤坡耕地典型坡面,各坡面分上部、中部和下部布設(shè)采樣點(diǎn),坡度、坡長(zhǎng)適宜,種植作物為當(dāng)?shù)氐湫妥魑铮ū?),共布設(shè)樣點(diǎn)總數(shù)54個(gè),采樣前進(jìn)行農(nóng)戶調(diào)研,保證各采樣點(diǎn)處于不同農(nóng)戶耕種的地塊上,使各樣點(diǎn)均具有典型性和代表性,同時(shí)對(duì)耕種各地塊的農(nóng)戶進(jìn)行水土保持問(wèn)卷調(diào)查,獲得與采樣地塊相對(duì)應(yīng)的問(wèn)卷54份。以江西紅壤研究所布設(shè)的免耕示范坡耕地地塊為基準(zhǔn),坡度、坡長(zhǎng)適宜,邊溝、背溝等水土保持措施布設(shè)完善,在地塊中部布設(shè)樣點(diǎn)可代表坡面整體特征,采樣方法與小流域采樣點(diǎn)相同,重復(fù)3次。

        表1 紅壤小流域及示范區(qū)坡耕地采樣區(qū)基本情況

        1.2.2 樣品采集及指標(biāo)測(cè)定

        選擇采樣點(diǎn)中間位置挖掘土壤剖面,進(jìn)行垂直分布樣品采集。分0~10和>10~20 cm層采集土壤樣品,每層采集約1~2 kg土壤樣品裝入硬質(zhì)塑料盒帶回實(shí)驗(yàn)室,采集土壤環(huán)刀(100 cm3)樣品用于測(cè)定土壤容重和飽和導(dǎo)水率,分別采用三頭抗剪儀和PT袖珍型貫入儀分層測(cè)定土壤抗剪強(qiáng)度和貫入阻力值,各重復(fù)3次。采樣完成后,繼續(xù)向下挖掘土壤剖面至作物根系消失,采用鋼卷尺測(cè)定土壤剖面約90%作物根系分布深度為耕層厚度[12]。將采集的土壤樣品自然風(fēng)干后,過(guò)篩測(cè)定土壤理化性質(zhì),土壤黏粒含量采用沉降法測(cè)定,pH值采用土水比1:1電極法測(cè)定,土壤有機(jī)質(zhì)采用重鉻酸鉀容量法-外加熱法測(cè)定,土壤全氮采用半微量凱氏定氮法測(cè)定,土壤有效磷采用Olsen法測(cè)定,土壤速效鉀采用l mol/LNH4Ac提取-火焰光度法測(cè)定。

        1.2.3 耕層質(zhì)量退化指數(shù)

        耕層質(zhì)量退化指數(shù)(CLDI)可直觀分析耕層質(zhì)量退化特征及程度。免耕耕作對(duì)土壤擾動(dòng)程度低,耕層結(jié)構(gòu)破壞性小,顯著降低了耕層質(zhì)量退化速率[13-16],即以免耕示范坡耕地耕層土壤屬性參數(shù)測(cè)定值為基準(zhǔn)(CLDI=0)。假設(shè)其他坡耕地地塊類(lèi)型都是由免耕坡耕地經(jīng)過(guò)農(nóng)業(yè)生產(chǎn)活動(dòng)轉(zhuǎn)化而來(lái),將紅壤小流域坡耕地各采樣地塊耕層土壤屬性參數(shù)值與免耕坡耕地進(jìn)行對(duì)比,取0~10和>10~20 cm層土壤參數(shù)平均值計(jì)算耕層質(zhì)量退化指數(shù),計(jì)算公式如下

        式中CLDI為耕層質(zhì)量退化指數(shù);X為第個(gè)地塊第個(gè)指標(biāo)值,X為第個(gè)指標(biāo)的基準(zhǔn)值,W為第個(gè)指標(biāo)權(quán)重,N是第個(gè)地塊第個(gè)指標(biāo)的隸屬度值

        從耕層抗侵蝕性能、耕作性能和生產(chǎn)性能3方面選擇耕層質(zhì)量退化評(píng)價(jià)指標(biāo)[17]。基于評(píng)價(jià)指標(biāo)與耕層質(zhì)量的正負(fù)效應(yīng)建立各指標(biāo)與耕層生產(chǎn)力之間的隸屬函數(shù),對(duì)各指標(biāo)量綱進(jìn)行統(tǒng)一。S型和反S型函數(shù)以小流域采樣點(diǎn)各指標(biāo)參數(shù)實(shí)測(cè)值的最小值(1)和最大值(2)作為函數(shù)的轉(zhuǎn)折點(diǎn),拋物線型函數(shù)對(duì)應(yīng)指標(biāo)的轉(zhuǎn)折點(diǎn)通過(guò)文獻(xiàn)資料和野外實(shí)測(cè)數(shù)據(jù)結(jié)果獲得[17-18],采用主成分分析法獲得各指標(biāo)權(quán)重,詳見(jiàn)表2。計(jì)算耕層質(zhì)量退化指數(shù)可較全面反映坡耕地耕層質(zhì)量退化程度,CLDI<0表明耕層質(zhì)量退化程度高于基準(zhǔn)點(diǎn),其值越小,耕層退化越嚴(yán)重;CLDI>0表明耕層質(zhì)量處于無(wú)退化或趨于改良狀態(tài)。

        表2 評(píng)價(jià)指標(biāo)類(lèi)型及隸屬函數(shù)

        1.3 障礙因子診斷模型

        明確坡耕地耕層質(zhì)量改良的障礙因素并有針對(duì)性的消除障礙因子,對(duì)耕層質(zhì)量恢復(fù)和改善有重要意義。本文引入障礙因子診斷模型[19-20]如下

        式中M為第個(gè)地塊第個(gè)指標(biāo)的障礙度;M為第個(gè)指標(biāo)的平均障礙度,其大小順序可以反映研究區(qū)耕層質(zhì)量障礙因子的主次關(guān)系;P=1?N,表示耕層單項(xiàng)指標(biāo)與耕層理想狀態(tài)(隸屬度為1)的差距,數(shù)值越大對(duì)耕層質(zhì)量越不利,N為第個(gè)地塊第個(gè)指標(biāo)的隸屬度值;W為單項(xiàng)指標(biāo)對(duì)總體的貢獻(xiàn)率,即指標(biāo)權(quán)重。

        1.4 數(shù)據(jù)處理

        通過(guò)坡耕地耕層調(diào)查和室內(nèi)試驗(yàn)分析獲得各地塊耕層土壤屬性參數(shù)數(shù)據(jù)。單位坡耕地面積農(nóng)業(yè)投入等反映耕層質(zhì)量退化人為驅(qū)動(dòng)因子的指標(biāo)通過(guò)農(nóng)戶水土保持問(wèn)卷調(diào)查獲得:?jiǎn)挝黄赂孛娣e農(nóng)業(yè)投入(人力、物力等均轉(zhuǎn)換為資金表征)=調(diào)查地塊當(dāng)年農(nóng)業(yè)總投入/地塊面積;家庭人均坡耕地面積=調(diào)查地塊所屬農(nóng)戶家庭坡耕地總面積/家庭總?cè)藬?shù);家庭農(nóng)業(yè)人口占比=調(diào)查地塊所屬農(nóng)戶家庭從事農(nóng)業(yè)生產(chǎn)人數(shù)/家庭總?cè)藬?shù);耕作方式采用賦值法進(jìn)行定量化處理,如:深松1、免耕2、翻耕3等;田間道路通達(dá)度則根據(jù)田間道路等級(jí)設(shè)置不同權(quán)重,采用加權(quán)求和法獲得,連接田塊的道路等級(jí)越高、數(shù)量越多,田間道路通達(dá)度越高;單位坡耕地面積機(jī)械總動(dòng)力=(耕作機(jī)具功率×?xí)r間+施肥機(jī)具功率×?xí)r間……收獲機(jī)具功率×?xí)r間)/調(diào)查地塊面積。小流域年降雨量、土壤侵蝕模數(shù)等數(shù)據(jù)由江西紅壤研究所定位監(jiān)測(cè)獲得,使用SPSS21.0軟件進(jìn)行主成分分析,Excel2013軟件進(jìn)行數(shù)據(jù)處理和繪圖。

        采用SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)分析。計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差表示,組間比較采用t檢驗(yàn),兩組病人主要變量變化趨勢(shì)采用重復(fù)測(cè)量方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義;不同時(shí)間點(diǎn)主要變量比較采用Bonferroni 校正法,P<0.017為差異有統(tǒng)計(jì)學(xué)意義。

        2 結(jié)果與分析

        2.1 坡耕地耕層質(zhì)量退化特征

        2.1.1 耕層退化程度分級(jí)

        坡耕地耕層退化是耕層土壤環(huán)境和理化性狀?lèi)夯瘜?dǎo)致水土流失和耕層生產(chǎn)力下降的綜合表征。利用耕層質(zhì)量退化指數(shù)對(duì)坡耕地耕層退化程度進(jìn)行定量化分析,有利于客觀認(rèn)識(shí)紅壤坡耕地耕層質(zhì)量退化特征?;贑LDI計(jì)算結(jié)果,紅壤坡耕地耕層退化程度可分為6個(gè)等級(jí)(圖1a),第I級(jí)為耕層質(zhì)量退化指數(shù)大于0,表征耕層未產(chǎn)生退化或處于改善、恢復(fù)狀態(tài)的無(wú)退化耕層,坡耕地生產(chǎn)功能基本完整,土壤結(jié)構(gòu)良好,坡耕地系統(tǒng)恢復(fù)再生能力強(qiáng),生態(tài)問(wèn)題不顯著;第II級(jí)為耕層質(zhì)量略有退化的輕度退化耕層,耕層質(zhì)量退化指數(shù)介于0~?20%之間,坡耕地生產(chǎn)功能較為完善,土壤結(jié)構(gòu)尚好,一般干擾下坡耕地系統(tǒng)生產(chǎn)能力可恢復(fù);第III級(jí)為耕層質(zhì)量退化指數(shù)在

        圖1 紅壤坡耕地耕層質(zhì)量退化特征

        紅壤小流域坡耕地耕層質(zhì)量以中、輕度退化為主(圖1b)。無(wú)退化耕層平均退化指數(shù)為17%,其樣點(diǎn)占比為18.5%,主要分布在坡耕地下部,這與下部區(qū)域坡度較其他部位緩,養(yǎng)分在下部沉積有關(guān),深松機(jī)等農(nóng)業(yè)保護(hù)性耕作機(jī)械使用程度較高以及橫坡耕作等水土保持措施的實(shí)施均有利于減少水土流失,改善坡耕地耕層質(zhì)量。輕度退化耕層平均退化指數(shù)為?12%,樣點(diǎn)占比35.2%,在坡耕地不同部位分布比例相對(duì)均勻,合理耕作和施肥是改進(jìn)耕層質(zhì)量的有效措施。中度退化耕層平均退化指數(shù)為?30%,樣點(diǎn)占比為35.2%,主要分布在坡耕地上、中部,這主要是因?yàn)樯喜亢椭胁恳酝寥狼治g為主,降雨侵蝕造成耕層土壤及養(yǎng)分沿坡面向下位移,造成上部和中部坡位耕層薄化、養(yǎng)分流失,耕層質(zhì)量退化明顯。重度退化耕層平均退化指數(shù)為?47%,樣點(diǎn)占比11.1%,這可能與部分農(nóng)戶重用地輕養(yǎng)地,重產(chǎn)出輕投入有關(guān),相關(guān)政府部門(mén)采取積極的政策引導(dǎo),增強(qiáng)農(nóng)戶水土保持意識(shí),提高水土保持措施實(shí)施率,可減緩耕層質(zhì)量退化速率。從坡耕地不同部位來(lái)看,紅壤坡耕地耕層質(zhì)量平均退化指數(shù)為中部(?20.34%)>上部(?18.34%)>下部(?11.45%),說(shuō)明下部坡位耕層退化程度最低,更適宜農(nóng)業(yè)生產(chǎn)。

        2.1.2 耕層質(zhì)量退化主導(dǎo)因素辨識(shí)

        基于耕層質(zhì)量退化指數(shù)法將反映紅壤坡耕地耕層質(zhì)量退化特征的11項(xiàng)土壤屬性參數(shù)與免耕示范坡耕地土壤屬性參數(shù)之間的差異進(jìn)行比較后獲得的比值((X?X)/X),即各土壤參數(shù)退化程度作為表征坡耕地耕層質(zhì)量退化的指標(biāo)參數(shù)進(jìn)行主成分分析[14]。其中前4個(gè)主成分貢獻(xiàn)率大于10%,分別解釋了29.75%、18.33%、15.75%和10.19%的信息,累積貢獻(xiàn)率74.02%,解釋了紅壤坡耕地耕層質(zhì)量退化的大部分信息,其他主成分貢獻(xiàn)率相對(duì)較?。ū?),表明前4個(gè)主成分基本可以反映紅壤坡耕地耕層質(zhì)量退化特征。

        表3 紅壤坡耕地耕層質(zhì)量退化解釋度分析

        第1主成分與土壤全氮、土壤有機(jī)質(zhì)和土壤速效鉀相關(guān)性較高(載荷絕對(duì)值≥0.7,下同),載荷值分別為0.866、0.792和0.703,與其他指標(biāo)相關(guān)性相對(duì)較低,主要反映坡耕地耕層養(yǎng)分退化特征。第2主成分與土壤容重和土壤抗剪強(qiáng)度相關(guān)性高,載荷值分別為0.751和0.729,與其他指標(biāo)相關(guān)性相對(duì)較低,主要反映耕層抗侵蝕性能特征。第3和第4主成分分別與黏粒含量和pH值相關(guān)性較高,載荷值分別為?0.821和?0.736,分別表征土壤結(jié)構(gòu)和酸堿度,這說(shuō)明紅壤坡耕地耕層退化的主導(dǎo)因素為耕層養(yǎng)分退化、侵蝕退化,其次為土壤板結(jié)和酸化。將耕層質(zhì)量退化指數(shù)與主要指標(biāo)進(jìn)一步做回歸分析,結(jié)果表明:全氮、有機(jī)質(zhì)和有效磷與CLDI擬合效果較好(2≥0.5),2分別為0.735、0.655、和0.596,是紅壤坡耕地耕層質(zhì)量退化的關(guān)鍵指標(biāo)(表4)。

        2.1.3 耕層質(zhì)量退化驅(qū)動(dòng)因素分析

        坡耕地耕層質(zhì)量退化是土壤、生態(tài)系統(tǒng)的逆向演替過(guò)程,表現(xiàn)為對(duì)自然或人為干擾較低的抵抗性、較弱的緩沖能力以及較強(qiáng)的敏感性和脆弱性。耕層質(zhì)量退化是多因素綜合作用的結(jié)果,其中自然因素和人為因素是導(dǎo)致坡耕地耕層質(zhì)量退化的2大主要驅(qū)動(dòng)因素,自然因素主要包括氣候、坡度及成土母質(zhì)等,是耕層質(zhì)量退化的內(nèi)在誘因[3]。紅壤小流域年均降雨量1 587 mm,5-9月降雨量占全年降雨總量的60%~80%,降雨強(qiáng)度大(多暴雨,最大日降雨量達(dá)308.9 mm),年均土壤侵蝕模數(shù)1 962 t/km2·a,極易發(fā)生水土流失[21]。田面坡度在2°~20°之間,土壤侵蝕量與坡度成明顯正相關(guān),田面坡度增加1°,全年土壤侵蝕量遞增約120 t/km2[22]。成土母質(zhì)以第四紀(jì)紅色黏壤土為主,質(zhì)地偏黏,顆粒組成中的黏粒含量占20%以上,細(xì)砂含量也高,造成坡耕地侵蝕以面蝕和淺溝侵蝕為主[23]。

        表4 主要評(píng)價(jià)指標(biāo)與耕層質(zhì)量退化指數(shù)回歸分析

        農(nóng)業(yè)生產(chǎn)對(duì)紅壤坡耕地耕層質(zhì)量退化起主導(dǎo)性作用。日益增長(zhǎng)的農(nóng)業(yè)現(xiàn)代化需求、農(nóng)業(yè)機(jī)械化程度提高以及農(nóng)戶不合理耕作和施肥等都是加速坡耕地耕層質(zhì)量退化的重要因素。選擇單位坡耕地面積農(nóng)業(yè)投入(F1)表征農(nóng)業(yè)經(jīng)濟(jì)投入水平;家庭人均坡耕地面積(F2)表征農(nóng)業(yè)生產(chǎn)規(guī)模狀況;家庭農(nóng)業(yè)人口占比(F3)表征勞動(dòng)力短缺程度;耕作方式(F4)表征耕作方式多樣性;田間道路通達(dá)度(F5)表征田間交通便利程度;單位坡耕地面積機(jī)械總動(dòng)力(F6)表征農(nóng)業(yè)機(jī)械使用程度;單位坡耕地面積化肥施用量(F7)表征化肥施用強(qiáng)度,共7項(xiàng)指標(biāo)進(jìn)行主成分分析,診斷紅壤坡耕地耕層質(zhì)量退化的主要人為驅(qū)動(dòng)因子。從表5中可以看出PC1~PC4的主成分特征值大于1,累積貢獻(xiàn)率為75.69%,可解釋人為因素造成耕層質(zhì)量退化的大部分信息。

        表5 耕層質(zhì)量退化人為驅(qū)動(dòng)因子診斷指標(biāo)載荷矩陣

        單位坡耕地面積農(nóng)業(yè)投入、耕作方式、單位坡耕地面積機(jī)械總動(dòng)力和單位坡耕地面積化肥施用量分別在第一至第四主成分上載荷絕對(duì)值最大,分別為?0.587、?0.597、0.651和?0.680。說(shuō)明隨著經(jīng)濟(jì)的發(fā)展,農(nóng)戶對(duì)農(nóng)業(yè)產(chǎn)出的要求逐漸提高,而實(shí)際農(nóng)業(yè)產(chǎn)出無(wú)法達(dá)到農(nóng)戶預(yù)期,導(dǎo)致農(nóng)戶減少農(nóng)業(yè)投入,轉(zhuǎn)向發(fā)展其他產(chǎn)業(yè),單位坡耕地面積農(nóng)業(yè)投入少是造成耕層退化的重要因子。傳統(tǒng)順坡耕作等不合理耕作方式,使坡面徑流集中在壟溝內(nèi)自上而下排泄,加劇了土壤侵蝕,誘發(fā)紅壤坡耕地水土流失,造成耕層質(zhì)量退化[3]。隨著經(jīng)濟(jì)發(fā)展,農(nóng)業(yè)機(jī)械使用率提高,而農(nóng)業(yè)機(jī)械的廣泛使用也造成坡耕地耕層土壤壓實(shí)等問(wèn)題,土壤水分蓄持性能降低,造成耕層質(zhì)量下降,作物減產(chǎn)[24]。在農(nóng)業(yè)生產(chǎn)過(guò)程中忽略了土壤肥力的維護(hù),重耕輕養(yǎng),過(guò)度利用,是導(dǎo)致紅壤坡耕地耕層養(yǎng)分退化的重要原因[2-3]。

        2.2 不同退化程度下坡耕地耕層土壤屬性參數(shù)變化特征

        紅壤坡耕地耕層質(zhì)量退化對(duì)土壤物理、化學(xué)及力學(xué)性質(zhì)變化有重要影響。耕層質(zhì)量退化首先改變耕層土壤緊實(shí)度,繼而引發(fā)耕層水分等其他理化性質(zhì)的變化[25]。由表6可知,耕層厚度呈逐漸薄化趨勢(shì)。與無(wú)退化耕層相比,重度退化耕層的薄化率(退化耕層下降厚度與無(wú)退化耕層厚度的比值)為8.9%,適當(dāng)深松是增厚耕層的有效措施。土壤貫入阻力是反映耕作性能的重要參數(shù)。各退化耕層土壤貫入阻力較無(wú)退化耕層均有明顯增大,增大幅度依次為14.74%、33.16%和41.58%,這可能與降雨侵蝕造成表層土壤顆粒流失,下層土壤裸露、上移,土壤容重增大,造成作物根系下插阻力增大有關(guān)。

        耕層質(zhì)量退化在很大程度上取決于土壤水分條件,隨耕層退化程度加劇,土壤水分蓄持性能大幅下降[26]。與無(wú)退化耕層相比,各退化耕層土壤飽和導(dǎo)水率均有顯著下降,其中,重度退化耕層下降了67.5%,這與降雨侵蝕造成土壤板結(jié)、容重增大有關(guān)[27]。土壤有機(jī)質(zhì)等養(yǎng)分含量是構(gòu)成土壤肥力的重要要素,直接決定作物生長(zhǎng)和發(fā)育狀況。隨著退化程度加劇,土壤有機(jī)質(zhì)、全氮、有效磷和速效鉀均有不同程度的下降,中度退化耕層較無(wú)退化耕層分別降低了43.89%、32.56%、50.4%和73.5%,耕層養(yǎng)分退化明顯。黏粒含量是表征土壤質(zhì)地的重要參數(shù),其與作物生長(zhǎng)所需生態(tài)環(huán)境和養(yǎng)分供給關(guān)系密切,耕層土壤中各顆粒組成比例適當(dāng),可使土壤具有良好的結(jié)構(gòu)性。中度和重度退化耕層土壤黏粒含量較無(wú)退化耕層有明顯增加,分別是無(wú)退化耕層的3.2倍和3.8倍,這可能與農(nóng)戶長(zhǎng)期不合理耕作有關(guān)。pH值隨耕層退化程度加劇表現(xiàn)出先大幅減小后趨于穩(wěn)定的變化趨勢(shì),有機(jī)與無(wú)機(jī)肥料配施可明顯提高酸性土壤pH緩沖能力[28]。

        表6 不同退化程度下耕層土壤屬性參數(shù)變化特征

        注:不同字母表示同一耕層不同退化程度下差異顯著(<0.05);X1~ X11指代指標(biāo)見(jiàn)表2。

        Note: Different letters indicate significant difference in different degradation degrees of the same surface layer (<0.05); Designation of X1~ X11are shown in Table 2.

        2.3 坡耕地耕層質(zhì)量障礙因子診斷

        明確影響耕層質(zhì)量的主要障礙因子及其分布特征,對(duì)防治坡耕地耕層退化,實(shí)現(xiàn)耕層質(zhì)量改良有重要意義(圖2)。

        圖2 紅壤坡耕地耕層土壤參數(shù)障礙度

        利用障礙因子診斷模型計(jì)算耕層土壤屬性參數(shù)障礙度,結(jié)果表明紅壤坡耕地耕層質(zhì)量主要障礙因素表現(xiàn)為黏粒含量多、pH值小、耕層厚度薄和土壤抗剪強(qiáng)度小,4個(gè)因素平均障礙度分別為0.15、0.14、0.13和0.10(圖2a),這說(shuō)明土壤板結(jié)、酸化和土壤侵蝕是制約紅壤坡耕地農(nóng)業(yè)生產(chǎn)的主要障礙因素。在無(wú)退化、輕度退化、中度退化和重度退化程度下,黏粒含量障礙度依次為0.12、0.14、0.15和0.17,障礙度有明顯增大,這可能與傳統(tǒng)順坡耕作和南方丘陵區(qū)降雨量大導(dǎo)致土壤顆粒破壞,徑流侵蝕嚴(yán)重有關(guān)[29]。耕層厚度是影響耕層質(zhì)量的重要限制因子,對(duì)坡耕地水土保持和土壤生產(chǎn)力維護(hù)具有重要作用,其障礙度依次為0.12、0.13、0.13和0.15,表現(xiàn)出增大趨勢(shì),深松耕作對(duì)增厚耕層,改善土壤持水性能和土壤結(jié)構(gòu)效果顯著[24]。pH值障礙度呈增大趨勢(shì),增施有機(jī)肥可有效緩解土壤酸化現(xiàn)象。土壤抗剪強(qiáng)度則表現(xiàn)出減小趨勢(shì),但整體障礙度依然較大,其他參數(shù)障礙度相對(duì)較小,無(wú)明顯變化。

        從坡耕地不同部位來(lái)看,土壤有機(jī)質(zhì)、全氮、速效鉀和黏粒含量是影響耕層質(zhì)量的主要障礙因子,上部、中部和下部坡位土壤有機(jī)質(zhì)障礙度依次為0.12、0.12和0.10,全氮依次為0.11、0.11和0.09,速效鉀依次為0.11、0.12和0.11,黏粒含量依次為0.10、0.11和0.11(圖2b),其障礙度在不同部位略有差異,但差異不明顯,其他因子障礙度相對(duì)較小。降雨侵蝕造成坡耕地上、中部位以土壤侵蝕為主,耕層土壤和養(yǎng)分沿坡面向下位移,造成上坡部位養(yǎng)分缺乏而下部坡位養(yǎng)分富余,在降雨、徑流沖刷作用下,土壤顆粒向下坡運(yùn)移,造成下部坡位土壤黏重板結(jié),合理輪作和增施有機(jī)肥是有效改良措施。

        3 討 論

        3.1 耕層退化對(duì)土壤屬性參數(shù)的影響

        坡耕地耕層退化受降雨[22]、地形[23]、海拔[30]、坡度[30]、耕作方式[31]、施肥[32]及植被覆蓋度[33-34]等多種因素的影響。坡耕地耕層退化不僅造成水土流失,作物減產(chǎn),也引起了海拔、坡度、植被覆蓋度等土壤環(huán)境因子及土體構(gòu)型和有效土層厚度等土壤屬性參數(shù)的明顯變化[30,34-35]。本研究中各土壤屬性參數(shù)隨耕層退化程度加劇呈現(xiàn)不同變化趨勢(shì),與前人研究結(jié)果相同[36]。耕層厚度隨耕層退化程度加劇呈增大趨勢(shì),農(nóng)戶不合理耕作,加上土壤侵蝕造成表土顆粒剝離、流失,是造成耕層薄化的主要原因[37]。土壤飽和導(dǎo)水率主要反映土壤入滲和持水性能[38],各退化耕層較無(wú)退化耕層有明顯降低趨勢(shì),這主要與土壤容重增大有關(guān),黏粒含量和土壤有機(jī)質(zhì)也有一定影響作用[27,38]。

        土壤質(zhì)量和養(yǎng)分供給能力隨耕層退化程度加劇而逐漸退化,土壤有機(jī)質(zhì)和全氮等養(yǎng)分含量明顯損失。周華坤[33]研究表明土壤退化越嚴(yán)重,則土壤養(yǎng)分越貧瘠,且土壤有機(jī)質(zhì)等在表層土壤流失嚴(yán)重。養(yǎng)分含量下降會(huì)反作用于作物,抑制作物生長(zhǎng),同時(shí)誘發(fā)土壤侵蝕,導(dǎo)致土壤持續(xù)惡化[33]。本研究表明土壤酸化過(guò)程隨耕層退化程度加劇表現(xiàn)為先大幅下降后趨于平穩(wěn)趨勢(shì)。土壤耕作管理不當(dāng)、耕地資源過(guò)度利用是造成土壤酸化的主要原因,單施化肥或大量施用氮肥,將引起不同程度土壤酸化,養(yǎng)分失衡,而農(nóng)戶淺耕,施肥主要集中于表層土壤,耕層退化加劇土壤顆粒流失,下層土壤裸露,其養(yǎng)分含量較表層土壤低,土壤pH值變化不明顯。施用有機(jī)肥或石灰,對(duì)調(diào)節(jié)土壤酸堿度有一定作用[39]。黏粒含量對(duì)土壤理化性質(zhì)有重要影響,紅壤小流域土壤黏粒含量隨耕層退化程度加劇呈逐漸增大趨勢(shì),從無(wú)退化至過(guò)度退化階段,耕層土壤出現(xiàn)明顯沙化現(xiàn)象,與史德明等[35]人研究結(jié)果相同。不同土壤屬性參數(shù)相互作用,共同影響坡耕地耕層質(zhì)量和退化程度,隨著耕層退化加劇,土壤生物屬性參數(shù)變化規(guī)律是否與理化及力學(xué)參數(shù)一致有待深入研究。

        3.2 紅壤坡耕地耕層質(zhì)量調(diào)控參數(shù)

        本研究表明紅壤坡耕地耕層退化以侵蝕退化、養(yǎng)分退化、土壤酸化及板結(jié)為主,黏粒含量大、pH值小、耕層薄化和土壤抗剪強(qiáng)度小是主要障礙因素,與前人研究結(jié)果類(lèi)似[3,18,20,39]。通過(guò)合理耕作改變耕層土壤微環(huán)境,降低或消除耕層障礙,創(chuàng)造適宜耕層是促進(jìn)紅壤坡耕地耕層質(zhì)量恢復(fù)、農(nóng)作物生產(chǎn)適宜性調(diào)控和坡耕地水土流失阻控的有效方法[17]。深松耕作打破犁底層的同時(shí)疏松耕層,增加了耕層厚度,被疏松土層的土壤孔隙度增加,改善了土壤的蓄持性能[12,24],進(jìn)而增加了土壤對(duì)大氣降水的蓄存能力,營(yíng)造耕層土壤水份庫(kù)和養(yǎng)分庫(kù),使更多的雨水及養(yǎng)分貯存在深層土壤中以供作物利用,提高雨水和養(yǎng)分資源利用效率和旱地蓄水保墑性能。

        圖3 深松耕作對(duì)紅壤坡耕地耕層薄化障礙類(lèi)型改良示意圖

        相關(guān)研究表明深松耕作使耕層土壤飽和導(dǎo)水率提高4倍多,提高了降水的入滲能力,顯著增加了耕層土壤含水量[40],深松耕作使耕層土壤容重降低了17.1%,穩(wěn)定性團(tuán)聚體數(shù)量顯著增加了30.7%,土壤孔隙狀況明顯改善[41]。羅錫文等[42]研究表明深松后紅壤坡耕地耕層土壤孔隙度顯著提高11.7%,且增產(chǎn)效果明顯,早在1961年陳恩鳳[43]先生指出深松33 cm小麥增產(chǎn)效果最好,而深松至48 cm時(shí)增產(chǎn)幅度開(kāi)始下降。黃尚書(shū)等[24]研究表明紅壤坡耕地深松30 cm可使土壤容重降低10.4%,土壤孔隙度增大60.3%,是解決耕層瘠薄化問(wèn)題的關(guān)鍵核心技術(shù)之一。朱瑞祥[44]研究表明田面坡度<15°為深松機(jī)適宜作業(yè)坡度,配套動(dòng)力11.03~14.70 kW可以避免機(jī)械壓實(shí)造成的耕層板結(jié)等問(wèn)題。綜上表明當(dāng)田面坡度<15°,土壤含水量15%~22%時(shí)[45],深松深度30~48 cm[24,43],配套動(dòng)力11.03~14.70 kW為紅壤坡耕地深松耕作適宜技術(shù)參數(shù)(圖3),是調(diào)控紅壤坡耕地耕層質(zhì)量的有效措施。

        4 結(jié) 論

        1)紅壤小流域坡耕地耕層質(zhì)量以中、輕度退化為主,樣點(diǎn)占比均為35.2%,重度退化11.1%,無(wú)退化18.5%;不同部位耕層質(zhì)量平均退化指數(shù)為中部(?20.34%)>上部(?18.34%)>下部(?11.45%)。侵蝕退化和養(yǎng)分退化是引起耕層質(zhì)量退化的主導(dǎo)因素,造成耕層質(zhì)量退化的自然驅(qū)動(dòng)因子為降雨、坡度和成土母質(zhì)等,人為驅(qū)動(dòng)因子為單位坡耕地面積農(nóng)業(yè)投入、耕作方式、單位坡耕地面積機(jī)械總動(dòng)力和單位坡耕地面積化肥施用量。

        2)與無(wú)退化程度相比,紅壤坡耕地各耕層土壤屬性參數(shù)呈差異性變化特征;隨耕層退化程度增大,耕層厚度呈逐漸薄化趨勢(shì),重度退化耕層薄化率達(dá)8.9%。降雨侵蝕和耕作方式不合理是主要影響因素;pH值隨耕層退化程度的加劇呈先大幅減小后趨于平穩(wěn)的變化趨勢(shì),輕度退化耕層土壤pH值較無(wú)退化耕層降低9.8%,有機(jī)與無(wú)機(jī)肥配施可緩解土壤酸化;各退化耕層土壤飽和導(dǎo)水率較無(wú)退化耕層有明顯下降趨勢(shì),至重度退化程度,土壤飽和導(dǎo)水率下降了67.5%,與降雨侵蝕造成表土顆粒剝離后下層土壤容重增大有關(guān)。

        3)紅壤坡耕地耕層質(zhì)量的主要障礙因素為黏粒含量多、pH值小、耕層厚度薄和土壤抗剪強(qiáng)度小,4個(gè)因素平均障礙度分別為0.15、0.14、0.13和0.10,黏粒含量、pH值和耕層厚度障礙度隨退化程度加劇呈增大趨勢(shì),土壤抗剪強(qiáng)度障礙度有所降低,但總體障礙度高于其他土壤參數(shù)。從不同部位來(lái)看,土壤有機(jī)質(zhì)、全氮、速效鉀和黏粒含量是主要障礙因子,適度深松(30~48 cm)與合理施肥是改善耕層質(zhì)量的有效措施。

        [1] 鄭海金,楊潔,黃鵬飛,等. 覆蓋和草籬對(duì)紅壤坡耕地花生生長(zhǎng)和土壤特性的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(4):119-126.

        Zheng Haijin, Yang Jie, Huang Pengfei, et al. Effects of straw mulching and vetiver grass hedgerows on peanut growth and soil property in red soil sloping field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 119-126. (in Chinese with English abstract)

        [2] 陳奇伯,王克勤,李金洪,等. 元謀干熱河谷坡耕地土壤侵蝕造成的土壤退化[J]. 山地學(xué)報(bào),2004,22(5):528-532.

        Chen Qibo, Wang Keqin, Li Jinhong, et al. Land degradation caused by soil erosion of slope in dry-hot valley of Yuanmou county[J]. Journal of Mountain Science, 2004, 22(5): 528-532. (in Chinese with English abstract)

        [3] 朱青. 坡耕地退化機(jī)理及侵蝕退化防治措施研究[D]. 杭州:浙江大學(xué),2008.

        Zhu Qing. A Study on the Sloping Farming Land Degradation Mechanism and the Protecting Measures Against Soil Erosion Degradation[D]. Hangzhou: Zhejiang university, 2008. (in Chinese with English abstract)

        [4] Adejuwon J O, Ekanade O. A comparison of soil properties under different land use types in a part of the Nigerian Cocoa Belt[J]. Catena, 1988, 15(3/4): 319-331.

        [5] 唐明艷,楊永興. 不同人為干擾下納帕海湖濱濕地植被及土壤退化特征[J]. 生態(tài)學(xué)報(bào),2013,33(20):6681-6693.

        Tang Mingyan, Yang Yongxing. Analysis of vegetation and soil degradation characteristics under different human disturbance in lakeside wetland, Napahai[J]. Acta Ecologica Sinica, 2013, 33(20): 6681-6693. (in Chinese with English abstract)

        [6] He Jiajie, Dougherty M, AbdelGadir A. Numerical assisted assessment of vadose-zone nitrogen transport under soil moist rue controlled wastewater SDI dispersal system in a Vertisol[J]. Ecological Engineering, 2013(53): 228-234.

        [7] 尹剛強(qiáng),田大倫,方晰,等. 不同土地利用方式對(duì)湘中丘陵區(qū)土壤質(zhì)量的影響[J]. 林業(yè)科學(xué),2008,44(8):9-15.

        Yin Gangqiang, Tian Dalun, Fang Xi, et al. Effects of land use types on soil quality of the hilly area in central Hunan Province[J]. Scientia Silvae Sinicae, 2008, 44(8): 9-15. (in Chinese with English abstract)

        [8] 常春艷,趙庚星,李晉,等. 黃河三角洲典型生態(tài)脆弱區(qū)土壤退化遙感反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):127-132.

        Chang Chunyan, Zhao Gengxing, Li Jin, et al. Remote sensing inversion of soil degradation in typical vulnerable ecological region of Yellow River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 127-132. (in Chinese with English abstract)

        [9] 秦元偉,趙庚星,王靜,等. 黃河三角洲濱海鹽堿退化地恢復(fù)與再利用評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(11):306-311.

        Qin Yuanwei, Zhao Gengxing, Wang Jing, et al. Restoration and reutilization evaluation of coastal saline-alkaline degraded lands in Yellow River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2009, 25(11): 306-311. (in Chinese with English abstract)

        [10] 桂東偉,雷加強(qiáng),曾凡江,等. 綠洲邊緣不同土地利用方式下的土壤質(zhì)量變化及分析[J]. 環(huán)境科學(xué),2010,31(9):2248-2253.

        Gui Dongwei, Lei Jiaqiang, Zeng Fanjiang, et al. Changes and analysis of soil quality under different land use types in oasis rim[J]. Environmental Science, 2010, 31(9): 2248-2253. (in Chinese with English abstract)

        [11] 張孝存. 東北典型黑土區(qū)流域侵蝕-沉積對(duì)土壤質(zhì)量的影響[D]. 西安:陜西師范大學(xué),2013.

        Zhang Xiaocun. Effects of Soil Erosion-deposition on Soil Quality in the Typical Black Soil Area of Northeast China[D]. Xi’an: Shangxi Normal University, 2013. (in Chinese with English abstract)

        [12] 韓曉增,鄒文秀,陸新春,等. 旱作土壤耕層及其肥力培育途徑[J]. 土壤與作物,2015,4(4):145-150.

        Han Xiaozeng, Zhou Wenxiu, Lu Xinchun, et al. The soil cultivated layer in dryland and technical patterns in cultivating soil fertility[J], Soil and Crop, 2015, 4(4): 145-150. (in Chinese with English abstract)

        [13] 陳強(qiáng),Kravchenko Y S,陳淵,等. 少免耕土壤結(jié)構(gòu)與導(dǎo)水能力的季節(jié)變化及其水保效果[J]. 土壤學(xué)報(bào),2014,51(1):11-20.

        Chen Qiang, Kravchenko Y S, Chen Yuan, et al. Seasonal variations of soil structures and hydraulic conductivities and their effects on soil and water conservation under no-tillage and reduced tillage[J]. Acta Pedologica Sinica, 2014, 51(1): 11-20. (in Chinese with English abstract)

        [14] Medeirosa C J, Serranob E R, Martosc H J L, et al. Effect of various soil tillage systems on structure development in a Haploxeralf of central Spain[J]. Soil Technology, 1997, 11(2): 197-204.

        [15] Hill R L. Long-term conventional and no-tillage effects on selected soil physical properties[J]. Soil Science Society of America Journal, 1990, 54(1): 161-166.

        [16] Muukkonen P, Hartikainen H, Alakukku L. Effect of soil structure disturbance on erosion and phosphorus losses from finnish clay soil[J]. Soil and Tillage Research, 2009, 103(1): 84-91.

        [17] 金慧芳,史東梅,陳正發(fā),等. 基于聚類(lèi)及PCA分析的紅壤坡耕地耕層土壤質(zhì)量評(píng)價(jià)指標(biāo)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(7):155-164.

        Jin Huifang, Shi Dongmei, Chen Zhengfa, et al. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 155-164. (in Chinese with English abstract)

        [18] 劉杰. 湘中南紅壤地區(qū)土壤質(zhì)量特征與退化紅壤的肥力調(diào)控技術(shù)研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2010.

        Liu Jie. Red Soil Quality Characteristics and Fertility Ameliorating Measures in Central-sout h Hunan Province[D]. Changsha: Hunan Agricultural University, 2010. (in Chinese with English abstract)

        [19] 王琪琪,濮勵(lì)杰,朱明,等. 沿海灘涂圍墾區(qū)土壤質(zhì)量演變研究—以江西省如東縣為例[J]. 地理科學(xué),2016,36(2):256-264.

        Wang Qiqi, Pu Lijie, Zhu Ming, et al. Soil quality evolution in coastal reclamation zones: A case study of rudong county of Jiangsu Province[J]. Scientia Geographica Sinica, 2016, 36(2): 256-264. (in Chinese with English abstract)

        [20] 楊奇勇,楊勁松,姚榮江. 基于GIS的耕地土壤養(yǎng)分貧瘠化評(píng)價(jià)及障礙因子分析[J]. 自然資源學(xué)報(bào),2010,25(8):1375-1384.

        Yang Qiyong, Yang Jingsong, Yao Rongjiang. GIS-based evaluation of soil nutrient depletion and analysis of its limiting factors in Yucheng city[J]. Journal of Natural Resources, 2010, 25(8): 1375-1384. (in Chinese with English abstract)

        [21] 陳曉安,楊潔,湯崇軍,等. 雨強(qiáng)和坡度對(duì)紅壤坡耕地地表徑流及壤中流的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):141-146.

        Chen Xiaoan, Yang Jie, Tang Chongjun, et al. Effects of rainfall intensity and slope on surface and subsurface runoff in in red soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 141-146. (in Chinese with English abstract)

        [22] 水建國(guó),葉元林,王建紅,等. 中國(guó)紅壤丘陵區(qū)水土流失規(guī)律與土壤允許侵蝕量的研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2003,36(2):179-183.

        Shui Jianguo, Ye Yuanlin, Wang Jianhong, et al. Regularity of erosion and soil loss tolerance in hilly red-earth region of china[J]. China Scientia Agricultura Sinica, 2003, 36(2): 179-183. (in Chinese with English abstract)

        [23] 歐陽(yáng)春. 兩種母質(zhì)發(fā)育紅壤的侵蝕治理效益與配置模式的研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2011.

        Ouyang Chun. Study on the Erosion Treatment Effectiveness and Implementation Model of Red Soils Developed from Two Parent Materials in Hilly Region[J]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese with English abstract)

        [24] 黃尚書(shū),鐘義軍,葉川,等. 深松與壓實(shí)對(duì)紅壤坡耕地土壤物理性質(zhì)的影響[J]. 土壤通報(bào),2017,48(6):1347-1353.

        Huang Shangshu, Zhong Yijun, Ye Chuan, et al. Effects of deep loosening and mechanical compaction on soil physical properties in red soil slope field[J]. Chinese Journal of Soil Science, 2017, 48(6): 1347-1353. (in Chinese with English abstract)

        [25] Kainer K A, Duryea M L, Macêdo N C D, et al. Brazil nut seedling establishment and autecology in extractive reserves of acre[J]. Ecological Applications, 1998, 8(2): 397-410.

        [26] 蔡曉布,張永青,邵偉. 不同退化程度高寒草原土壤肥力變化特征[J]. 生態(tài)學(xué)報(bào),2008,28(3):1034-1044.

        Cai Xiaobu, Zhang Yongqing, Shao Wei. Characteristics of soil fertility in alpine steppes at different degradation grades[J]. Acta Ecologica Sinica, 2008, 28(3): 1034-1044. (in Chinese with English abstract)

        [27] 方堃,陳效民,張佳寶,等. 紅壤地區(qū)典型農(nóng)田土壤飽和導(dǎo)水率及其影響因素研究[J]. 灌溉排水學(xué)報(bào),2008,27(4):67-69.

        Fang Kun, Chen Xiaomin, Zhang Jiabao, et al. Saturated hydraulic conductivity and its influential factors of typical farmland in red soil region[J]. Journal of Irrigation and Drainage, 2008, 27(4): 67-69. (in Chinese with English abstract)

        [28] 和利釗,張楊珠,劉杰,等. 不同施肥處理對(duì)侵蝕性紅壤酸性和交換性能的修復(fù)效應(yīng)[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2012,38(1):86-91.

        He Lizhao, Zhang Yangzhu, Liu Jie, et al. Restoration effect of different fertilizations on the acidic and exchange property of eroded red soil[J]. Journal of Hunan Agricultural University: Natural Sciences, 2012, 38(1): 86-91. (in Chinese with English abstract)

        [29] 周怡雯,戴翠婷,劉窯軍,等. 耕作措施及雨強(qiáng)對(duì)南方紅壤坡耕地侵蝕的影響[J]. 水土保持學(xué)報(bào),2019,33(2):49-54.

        Zhou Yiwen, Dai Cuiting, Liu Yaojun, et al. Effects of cultivation measures and rainfall intensities on the slope erosion in red soil sloping cropland[J]. Journal of Soil and Water Conservation, 2019, 33(2): 49-54. (in Chinese with English abstract)

        [30] 陳世發(fā). 紅壤典型小流域水土流失演變規(guī)律及治理范式研究[D]. 福州:福建師范大學(xué),2009.

        Chen Shifa. Study on the Evolution of Soil Erosion in a Typical Small Watershed of Red Loam and Its Improvement Paradigms[D]. Fuzhou: Fujian Normal University, 2009. (in Chinese with English abstract)

        [31] 王帥兵,王克勤,宋婭麗,等. 高反坡階對(duì)昆明市松華壩水源區(qū)坡耕地氮、磷流失的影響[J]. 水土保持學(xué)報(bào),2017,31(6):39-45.

        Wang Shuaibing, Wang Keqin, Song Yali, et al. Effects of contour reverse-slope terrace on nitrogen and phosphorus loss in sloping farmland in the water resource area of Songhua dam in Kunming city[J]. Journal of Soil and Water Conservation, 2017, 31(6): 39-45. (in Chinese with English abstract)

        [32] Karimi R, Akinremi W, Flaten D. Nitrogen-or phosphorus- based pig manure application rates affect soil test phosphorus and phosphorus loss risk[J]. Nutrient Cycling in Agroecosystems, 2018, 111(2/3): 217-230.

        [33] 周華坤,趙新全,周立,等. 青藏高原高寒草甸的植被退化與土壤退化特征研究[J]. 草業(yè)學(xué)報(bào),2005,14(3):31-40.

        Zhou Huakun, Zhao Xinquan, Zhou Li, et al. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2005, 14(3): 31-40. (in Chinese with English abstract)

        [34] 史德明. 我國(guó)紅壤區(qū)侵蝕土壤的退化及其防治[J]. 中國(guó)水土保持,1987(12):1-5.

        Shi Deming. Degradation and its prevention of erosion soil in red soil region of china[J]. Soil and Water Conservation in China, 1987(12):1-5. (in Chinese with English abstract)

        [35] 史德明,韋啟潘,梁音,等. 中國(guó)南方侵蝕土壤退化指標(biāo)體系研究[J]. 水土保持學(xué)報(bào),2000,14(3):1-9.

        Shi Deming, Wei Qipan, Liang Yin, et al. Study on degradation index system of eroded soils in southern china[J]. Journal of Soil and Water Conservation, 2000, 14(3): 1-9. (in Chinese with English abstract)

        [36] 伍星,李輝霞,傅伯杰,等. 三江源地區(qū)高寒草地不同退化程度土壤特征研究[J]. 中國(guó)草地學(xué)報(bào),2013,35(3):77-84.

        Wu Xing, Li Huixia, Fu Bojie, et al. Study on soil characteristics of alpine grassland in different degradation levels in headwater regions of three rivers in China[J]. Chinese Journal of Grassland, 2013, 35(3): 77-84. (in Chinese with English abstract)

        [37] 石彥琴,高旺盛,陳源泉,等. 耕層厚度對(duì)華北高產(chǎn)灌溉農(nóng)田土壤有機(jī)碳儲(chǔ)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(11):85-90.

        Shi Yanqin, Gao Wangsheng, Chen Yuanquan, et al. Effect of topsoil thickness on soil organic carbon in high-yield and irrigated farmland in North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 85-90. (in Chinese with English abstract)

        [38] 程燕芳,王嘉學(xué),許路艷,等. 云南高原喀斯特山原紅壤退化中的表層土壤水分變異[J]. 江蘇農(nóng)業(yè)科學(xué),2015,43(11):433-437.

        Cheng Yanfang, Wang Jiaxue, Xu Luyan, et al. Surface soil moisture variation in the degradation of primary red soil in karst hills of the Yunnan Plateau[J]. Jiangsu Agricultural Science, 2015, 43(11): 433-437. (in Chinese with English abstract)

        [39] 劉杰,張楊珠. 紅壤地區(qū)土壤退化與恢復(fù)重建研究(Ⅱ)退化紅壤的防治對(duì)策[J]. 湖南農(nóng)業(yè)科學(xué),2010(7):62-66.

        Liu Jie, Zhang Yangzhu. A review on degradation and restoration of red soil[J]. Hunan Agricultural Science, 2010(7): 62-66. (in Chinese with English abstract)

        [40] 徐璐,王志春,趙長(zhǎng)巍,等. 深松對(duì)吉林西部低產(chǎn)旱田土壤物理特性的影響[J]. 土壤與作物,2012,1(2):121-125.

        Xu Lu, Wang Zhichun, Zhao Changwei, et al. Effect of sub-soiling on soil physical characteristics of low-yield dry land in the west of Jilin province[J]. Soil and Crop, 2012, 1(2): 121-125. (in Chinese with English abstract)

        [41] 李榮,候賢清. 深松條件下不同地表覆蓋對(duì)馬鈴薯產(chǎn)量及水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):115-123.

        Li Rong, Hou Xianqing. Effects of different ground surface mulch under sub-soiling on potato yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2015, 31(20): 115-123. (in Chinese with English abstract)

        [42] 羅錫文,李就好,朱余清,等. 耕作方式對(duì)磚紅壤物理特性和含水率的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(12):62-66.

        Luo Xiwen, Li Jiuhao, Zhu Yuqing, et al. Effect of tillage methods on soil physical properties and moisture content of latosol[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(12): 62-66. (in Chinese with English abstract)

        [43] 陳恩鳳. 耕翻深度與耕層的層次發(fā)育[J]. 中國(guó)農(nóng)業(yè)科學(xué),1962,2(12):1-6.

        Chen Enfeng. Plowing depth and layer development of cultivated-layer[J]. China Scientia Agricultura Sinica, 1962, 2(12): 1-6. (in Chinese with English abstract)

        [44] 朱瑞祥,張軍昌,薛少平,等. 保護(hù)性耕作條件下的深松技術(shù)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):145-147.

        Zhu Ruixiang, Zhang Junchang, Xue Shaoping, et al. Experimentation about sub-soiling technique for conservation tillage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 145-147. (in Chinese with English abstract)

        [45] 唐艷萍. 淺析機(jī)械化深松表土處理作業(yè)技術(shù)[J]. 農(nóng)業(yè)開(kāi)發(fā)與裝備,2014(2):98.

        Tang Yanping. Analysis on mechanized deep loose surface soil treatment technology[J]. Agricultural Development and Equipment, 2014(2): 98. (in Chinese with English abstract)

        Diagnosis of obstacle factors and degradation characteristics of cultivated-layer quality for red soil sloping farmland

        Jin Huifang1, Shi Dongmei1※, Zhong Yijun2, Huang Shangshu2, Song Ge1, Duan Teng1

        (1.400715,; 2.331700,)

        The degradation of cultivated-layer quality of sloping farmland shows the agro-ecological process of cultivated-layer profile damaged, soil nutrient depletion and the regulation ability of crops-ecological environment declined or even completed loss on the slope scale by the combining effects of nature and human factors. In order to analyze the characteristics of soil degradation and main factors affecting degradation of cultivated layer for sloping farmland in southern red soil hilly area, taking the cultivated-layer soil (0-20cm) of red soil from a small watershed as research object, we analyzed the degradation characteristics of cultivated-layer quality by cultivated-layer degradation index (CLDI), identified the dominant factors and main driving factors of cultivated-layer degradation by principal component analysis and regression analysis, analyzed the variation characteristics of soil property parameters of different degradation degrees of cultivated-layer quality, and defined the main obstacle factors and obstacle amount of the cultivated-layer quality by the obstacle factor diagnostic model for red soil sloping farmland. The results showed that the distribution area of cultivated-layer quality was mainly in the moderately and mildly degraded level (accounting for 70.4% of the total samples), heavy degraded samples was 11.1%, and the samples of non-degraded cultivated-layer accounting for 18.5% in red soil small watershed. The main nature driving factors leading to cultivated-layer quality degradation were rainfall, slope and soil mother material, meanwhile, agricultural input per unit of sloping farmland, tillage measures, total mechanical power per unit of sloping farmland and amount of fertilizer applied per unit of sloping farmland were the main human-driving factors. In comparison with the no degraded soil, the cultivated-layer soil properties parameters in red soil sloping farmland showed characteristics in different degradation degree. The cultivated-layer thickness was gradually thinned. The pH value first decreased significantly and then tended to be stable, and the cultivated layer of degraded level was 9.8%, and lower than that of non-degraded cultivated layer. The thinning rate of severely degraded cultivated layer was 8.9%, compared with that of non-degradation cultivated layer, which was related to the water erosion and farmer’s improper tillage methods in daily farming. The soil clay content and soil shear strength increased gradually with the deterioration of cultivated layer soil. The main obstacles of the cultivated layer quality of red soil sloping farmland with highly soil clay content, lowly pH value, thinning cultivated layer and lowly soil shear strength, and their average obstacle amount were 0.15, 0.14, 0.13 and 0.10, respectively. However, the average obstacle amount of other soil property parameters was relatively low. The obstacle amount of soil clay content, pH value and cultivated layer thickness significantly increased with the degradation degree intensifying. However, the obstacle amount of soil shear strength decreased gradually, and other soil property parameters did not change significantly, which indicated that moderately sub-soiling about 30-48 cm and reasonable fertilization were effective measures to improve the cultivated layer quality of red soil sloping farmland. Our results could provide a theoretical basis and some parameter support to scientifically understand the degradation characteristics of cultivated layer quality, define the effective measures to improve the cultivated-layer quality and construct rational cultivated-layers for red soil sloping farmland.

        soils;degradation; diagnosis; cultivated-layer quality; obstacle factors; red soil sloping farmland

        金慧芳,史東梅,鐘義軍,黃尚書(shū),宋 鴿,段 騰. 紅壤坡耕地耕層土壤質(zhì)量退化特征及障礙因子診斷[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):84-93.doi:10.11975/j.issn.1002-6819.2019.20.011 http://www.tcsae.org

        Jin Huifang, Shi Dongmei, Zhong Yijun, Huang Shangshu, Song Ge, Duan Teng. Diagnosis of obstacle factors and degradation characteristics of cultivated-layer quality for red soil sloping farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 84-93. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.011 http://www.tcsae.org

        2018-10-14

        2019-05-15

        公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)“坡耕地合理耕層評(píng)價(jià)指標(biāo)體系建立(201503119-01-01)”

        金慧芳,博士生,主要從事土壤侵蝕與水土保持研究。Email:jinhuifangicola@163.com

        史東梅,博士,教授,主要從事水土生態(tài)工程、土壤侵蝕與水土保持研究。Email:shidm_1970@126.com

        10.11975/j.issn.1002-6819.2019.20.011

        S157.1

        A

        1002-6819(2019)-20-0084-10

        猜你喜歡
        耕層紅壤坡耕地
        輪作制度對(duì)敦化市土壤主要理化性狀影響的研究
        吉林蔬菜(2021年2期)2021-07-19 08:09:24
        初探熱脫附技術(shù)在有機(jī)污染紅壤修復(fù)的應(yīng)用
        昆鋼科技(2021年6期)2021-03-09 06:10:26
        紅壤坡耕地耕層質(zhì)量特征與障礙類(lèi)型劃分
        建平縣實(shí)施國(guó)家坡耕地治理項(xiàng)目成效及經(jīng)驗(yàn)
        長(zhǎng)期不同施肥對(duì)赤紅壤稻田區(qū)肥力的影響
        資陽(yáng)市雁江區(qū):防治并重 建管結(jié)合 創(chuàng)建坡耕地水土流失綜合治理示范區(qū)
        魯西南夏玉米區(qū)土壤耕層情況調(diào)查研究
        種植苧麻對(duì)南方坡耕地土壤抗蝕性的影響
        庫(kù)爾勒墾區(qū)不同耕作方式對(duì)棉田耕層容重的影響
        河南省坡耕地利用及生態(tài)退耕研究
        河南科技(2014年12期)2014-02-27 14:10:52
        日日碰狠狠丁香久燥| 99久久99久久久精品蜜桃| 无码国产精品一区二区av| 一区二区三区国产亚洲网站| 亚洲日韩精品欧美一区二区三区不卡| 成av人片一区二区三区久久| 日韩在线精品视频一区| 亚洲av永久无码精品网站在线观看| 精品国产a∨无码一区二区三区| 亚洲午夜无码久久久久软件| 久久人妻中文字幕精品一区二区| 粗大的内捧猛烈进出看视频| 亚洲男同帅gay片在线观看| 成激情人妻视频| 国产精品国产自产拍高清| 国产精品久久777777| 久久麻豆精品国产99国产精| 亚洲av色在线观看网站| 亚洲处破女av日韩精品中出| 久久99精品久久久久久秒播| 日韩欧美国产丝袜视频| 视频一区中文字幕日韩| 亚洲欧洲国产码专区在线观看| 丰满少妇在线观看网站| 狠狠躁夜夜躁人人爽天天不卡| 成人大片免费在线观看视频| 五月丁香综合激情六月久久| 日本免费人成视频播放| 国产精品亚洲一区二区三区妖精| 国产福利一区二区三区在线视频| 久久99久久99精品免观看| 国产一线视频在线观看高清 | 亚洲欧美另类自拍| 日本二区视频在线观看| 国产极品裸体av在线激情网| 欧美精品中文字幕亚洲专区| 一区二区三区福利在线视频| 国产精品亚洲一区二区三区在线看| 国产亚洲精品美女久久久| 欧美激情αv一区二区三区| 91亚洲夫妻视频网站|