亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        便攜式魚粉品質(zhì)檢測裝置的設(shè)計(jì)與參數(shù)優(yōu)化

        2019-05-24 07:23:04牛智有譚鶴群張偉健
        關(guān)鍵詞:魚粉電子鼻氣體

        李 培,牛智有,2※,譚鶴群,2,劉 鳴,張偉健

        ?

        便攜式魚粉品質(zhì)檢測裝置的設(shè)計(jì)與參數(shù)優(yōu)化

        李 培1,牛智有1,2※,譚鶴群1,2,劉 鳴1,張偉健1

        (1.華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2.農(nóng)業(yè)部長江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

        為了快速檢測魚粉的品質(zhì),該文設(shè)計(jì)了一種便攜式的魚粉品質(zhì)檢測裝置,該裝置以微處理器樹莓派為核心,主要由氣路氣體采集、電路數(shù)據(jù)獲取和軟件等部分組成,其中氣路氣體采集主要是采集零氣和樣品氣體,電路數(shù)據(jù)獲取主要是將傳感器的電信號進(jìn)行采集、放大和AD(analog-digital)轉(zhuǎn)換,軟件部分則設(shè)計(jì)了傳感器數(shù)據(jù)采集和清洗等界面,并實(shí)時(shí)顯示采集到的數(shù)據(jù)。為了研究該裝置的檢測性能,該文采用響應(yīng)面法,選取了對檢測結(jié)果影響較大的氣體流量、采樣時(shí)間、清洗時(shí)間作為試驗(yàn)因素,以離散比為試驗(yàn)指標(biāo),利用Design-Expert軟件對該裝置的參數(shù)進(jìn)行優(yōu)化,得到最優(yōu)的參數(shù)組合,并在最優(yōu)參數(shù)下,驗(yàn)證了檢測裝置對魚粉品質(zhì)檢測的可行性和檢測性能。試驗(yàn)結(jié)果表明:氣體流量、采樣時(shí)間、清洗時(shí)間均對離散比影響顯著,且顯著性影響程度為清洗時(shí)間>采樣時(shí)間>氣體流量,綜合考慮各因素,得到最佳參數(shù)組合為氣體流量2.2 L/min,采樣時(shí)間39 s,清洗時(shí)間77 s,此時(shí)離散比實(shí)測值為0.579 9。在最優(yōu)參數(shù)下,對不同儲(chǔ)藏時(shí)間等級的魚粉樣品進(jìn)行檢測,得到不同儲(chǔ)藏時(shí)間等級逐步判別的正確度為89.4%,可以實(shí)現(xiàn)對不同品質(zhì)的魚粉進(jìn)行檢測,可為魚粉品質(zhì)檢測裝置的研究提供相應(yīng)參考和技術(shù)支撐。

        品質(zhì)控制;無損檢測;參數(shù)優(yōu)化;響應(yīng)面;魚粉

        0 引 言

        魚粉含有豐富的蛋白質(zhì)和脂肪,是動(dòng)物源性飼料的主要原料[1]。在運(yùn)輸和儲(chǔ)存的過程中,容易發(fā)生蛋白質(zhì)分解、脂肪氧化和酸敗,且易受微生物污染和其他化學(xué)物質(zhì)影響,導(dǎo)致營養(yǎng)成分降低,熱能含量減少,適口性下降,這不僅危害動(dòng)物的正常繁殖和健康,還會(huì)對動(dòng)物源性食品安全和人類的健康產(chǎn)生一定的安全隱患[2]。因此開展動(dòng)物源性飼料品質(zhì)的檢測顯得十分必要。常用的魚粉品質(zhì)檢測方法有化學(xué)檢測、感官評定等傳統(tǒng)方法以及光譜分析[3]、電子舌[4]等無損檢測方法,傳統(tǒng)的檢測方法存在操作繁瑣、耗時(shí)、主觀性強(qiáng)等缺點(diǎn),而光譜分析以及電子舌等方法也具有一定的局限性。

        仿生嗅覺技術(shù)是近年來發(fā)展起來的一種新型農(nóng)產(chǎn)品質(zhì)量分析、識(shí)別和檢測技術(shù)[5]。它使用具有交叉敏感性的氣體傳感器陣列來檢測被采樣樣品的揮發(fā)性氣味,并使用指紋圖譜來識(shí)別和量化樣品氣體,得到樣品的整體信息(也稱“指紋圖譜”數(shù)據(jù)),從而實(shí)現(xiàn)樣品的檢測與識(shí)別。該項(xiàng)技術(shù)現(xiàn)已被應(yīng)用在多個(gè)領(lǐng)域,比如Kriengkri等[6-8]將該技術(shù)應(yīng)用在雞肉、對蝦以及海鱸魚新鮮度檢測上;還有的學(xué)者將這項(xiàng)技術(shù)應(yīng)用在農(nóng)產(chǎn)品質(zhì)量檢測以及農(nóng)產(chǎn)品病蟲害防治等方面[9-17];閆嘉等[18-21]將該技術(shù)應(yīng)用在醫(yī)學(xué)的應(yīng)用研究當(dāng)中。雖然國內(nèi)外學(xué)者對該技術(shù)研究較多,但目前鮮有對裝置參數(shù)優(yōu)化的研究,不同的參數(shù)對于裝置的穩(wěn)定性和樣品品質(zhì)的識(shí)別率等都有很大的影響。雖然洪雪珍等[22]對影響牛肉品質(zhì)檢測的電子鼻的參數(shù)進(jìn)行了優(yōu)化,但只選擇了頂空空間,樣品質(zhì)量,頂空生成時(shí)間,并未對影響電子鼻檢測性能的采樣時(shí)間和清洗時(shí)間進(jìn)行優(yōu)化;孔麗娜等[23]對影響草魚鮮度檢測的電子鼻的參數(shù)進(jìn)行了優(yōu)化,并選取了對其影響最大的清洗時(shí)間、采樣時(shí)間、氣體流量進(jìn)行了響應(yīng)面試驗(yàn),但對這3個(gè)因素之間的交互作用分析并不清楚,且未對頂空空間進(jìn)行優(yōu)化,所選擇的指標(biāo)也較為單一。雖然有學(xué)者已經(jīng)研究了不同的參數(shù)對電子鼻檢測性能的影響[24-27],但上述因素對傳感器陣列組成的魚粉品質(zhì)檢測裝置的檢測性能影響還需要進(jìn)一步研究。

        為了解決上述問題,本文設(shè)計(jì)了一種基于樹莓派的魚粉品質(zhì)檢測裝置,并以魚粉為研究對象,以離散比為試驗(yàn)指標(biāo),對影響其檢測性能的頂空空間,樣品質(zhì)量,采樣時(shí)間,清洗時(shí)間,氣體流量等因素進(jìn)行了單因素試驗(yàn),得到最佳參數(shù),后在單因素試驗(yàn)的基礎(chǔ)上選取了對該檢測系統(tǒng)影響較大的氣體流量、采樣時(shí)間、清洗時(shí)間因素進(jìn)行響應(yīng)面分析,確定了最優(yōu)性能參數(shù),并驗(yàn)證了優(yōu)化參數(shù)下檢測裝置的檢測性能,為后續(xù)應(yīng)用該檢測裝置提供了數(shù)據(jù)支撐。

        1 檢測裝置的結(jié)構(gòu)設(shè)計(jì)

        該檢測裝置主要由氣體采集與傳輸模塊、控制處理存儲(chǔ)模塊、數(shù)據(jù)采集模塊、傳感器陣列模塊組成。其中,氣體采集與傳輸模塊主要是采集零氣和樣品氣體,并將氣體通過管道傳輸至傳感器陣列模塊,控制處理存儲(chǔ)模塊進(jìn)行數(shù)據(jù)處理存儲(chǔ)和控制處理;數(shù)據(jù)采集模塊對傳感器的電信號進(jìn)行采集、放大、濾波和AD轉(zhuǎn)換,傳感器陣列模塊所采用的傳感器包括TGS822、TGS2602、TGS813、TGS2620、MQ136、TGS2600、MQ139、TGS2610、MQ137、TGS2611 10個(gè)傳感器,可對氣體進(jìn)行響應(yīng)和恢復(fù)。

        1.1 檢測裝置的氣路設(shè)計(jì)

        氣體采集與傳輸模塊結(jié)構(gòu)如圖1所示,主要由2個(gè)兩位兩通電磁閥、微型氣泵、氣體流量計(jì)、氣體采樣室、單向閥、樣品氣體生成室等組成。工作時(shí),氣路部分先清洗傳感器氣室。電磁閥1打開,電磁閥2關(guān)閉,通道切換至經(jīng)由活性炭瓶過濾后的純凈空氣通道,純凈空氣在微型氣泵的作用下被吸至氣體采樣室清洗傳感器直到達(dá)到設(shè)定的清洗時(shí)間,以避免殘余氣體對下一次采樣過程的影響,使用凈化后的純凈氣體也減少了外界空氣對進(jìn)氣系統(tǒng)的干擾。隨后電磁閥1關(guān)閉,電磁閥2打開,切換至樣品通道,樣品生成室主要是產(chǎn)生樣品氣體,以便系統(tǒng)對氣體進(jìn)行檢測。所以樣品氣體在純凈空氣補(bǔ)充氣的攜帶下被吸至傳感器室,此時(shí)傳感器陣列吸附一定量的樣品氣體導(dǎo)致其電導(dǎo)率值等發(fā)生變化,該變化的信號被采集單元捕獲并傳送給樹莓派進(jìn)行數(shù)據(jù)處理與模式識(shí)別。

        其中微型氣泵型號為FKY8006,主要作用是將樣品氣或者標(biāo)準(zhǔn)空氣吸入氣體采樣室,分別進(jìn)行系統(tǒng)的采樣與清洗,該泵的平均流量為3.5 L/min,完全可以將氣體吸至氣體采樣室。氣體采樣室用來安放各個(gè)氣體傳感器,并給氣體提供流道使氣體與傳感器接觸并發(fā)生反應(yīng),進(jìn)而引起傳感器的阻值發(fā)生變化,以顯示當(dāng)前氣體的指紋圖譜信息。流量計(jì)既用來監(jiān)測當(dāng)前的流量狀態(tài),也用來調(diào)節(jié)整個(gè)電子鼻進(jìn)氣系統(tǒng)的流量;其中傳感器室由上殼體、中心體、下殼體組成。下殼體和上殼體上分別有進(jìn)氣口和出氣口,進(jìn)氣口與流量計(jì)通過內(nèi)徑為4 mm,外徑為8 mm的橡膠管連接,出氣口通過單向閥直接通向空氣中,以防未凈化的空氣回流進(jìn)入氣體采樣室,影響氣體傳感器的檢測精度,此單向閥的開啟壓力是0.005 MPa,可以滿足要求。中心體被平均分成了10個(gè)氣體通道使每一個(gè)傳感器都是一個(gè)獨(dú)立的氣室,當(dāng)氣體從進(jìn)氣口進(jìn)入時(shí),會(huì)沿著分好的氣體通道分別與位于上殼體周側(cè)的10個(gè)金屬氧化物半導(dǎo)體傳感器發(fā)生反應(yīng),這樣保證了各傳感器對樣本氣體實(shí)施檢測的同步性和均勻性,同時(shí),也保證了樣本氣體與傳感器充分接觸,減小響應(yīng)和恢復(fù)時(shí)間。該氣體采樣室的容積僅為0.059 L,有效減小了容積,且該氣體采樣室采用的材料是聚四氟乙烯,具有耐高溫、抗腐蝕、不易粘接、密封性良好等特點(diǎn),適合用來制造氣體采樣室。

        1. 樣品補(bǔ)充氣瓶 2. 樣品氣體生成室 3. 活性炭凈化瓶 4. 兩位兩通電磁閥1 5. 微型氣泵 6. 氣體流量計(jì) 7. 氣體采樣室 8. 單向閥 9. 兩位兩通電磁閥2

        1.2 檢測裝置的電路設(shè)計(jì)

        該系統(tǒng)的硬件測控單元結(jié)構(gòu)如圖2所示。在本硬件系統(tǒng)中,以微處理器樹莓派[28]為核心,通過程序控制繼電器的高低電平觸發(fā),進(jìn)而控制電磁閥的通斷實(shí)現(xiàn)不同功能氣路切換,控制微型氣泵的通斷實(shí)現(xiàn)氣路的通斷,部署在氣體采樣室的傳感器陣列通過感知?dú)怏w濃度的變化,并通過信號預(yù)處理電路進(jìn)行放大、濾波后送至ARPI600數(shù)據(jù)采集模塊進(jìn)行AD轉(zhuǎn)換并將采集到的數(shù)字信號發(fā)送給樹莓派。同時(shí),在氣體檢測過程中,氣路系統(tǒng)中的溫濕度變化通過置于系統(tǒng)中的溫濕度傳感器進(jìn)行在線監(jiān)測,并將結(jié)果傳送給樹莓派,所有的數(shù)據(jù)均保存在樹莓派的SD卡當(dāng)中。

        圖2 檢測裝置的硬件單元電控圖

        1.3 檢測裝置的軟件設(shè)計(jì)

        該檢測裝置的軟件選用的是跨平臺(tái)的qt creator圖形化編程軟件,主要設(shè)計(jì)了數(shù)據(jù)采集實(shí)時(shí)顯示和存儲(chǔ)部分,包括傳感器清洗部分和采樣部分,特征提取部分以及溫濕度信息采集部分等。工作時(shí),通過在編寫的圖形化界面上輸入?yún)?shù)便可進(jìn)行樣品氣體的采集,氣體傳感器室的清洗等操作,并可查看實(shí)時(shí)曲線和采集到的數(shù)據(jù),其人機(jī)交互界面如圖3所示,檢測裝置軟件的工作流程如圖4所示。

        注:其中傳感器1為TGS822,傳感器2為TGS2602,傳感器3為TGS813,傳感器4為TGS2620,傳感器5為MQ136,傳感器6為TGS2600,傳感器7為MQ139,傳感器8為TGS2610,傳感器9為MQ137,傳感器10為TGS2611。

        注:GPIO是樹莓派的接口。

        2 試驗(yàn)設(shè)計(jì)

        2.1 試驗(yàn)材料

        將新鮮的魚粉放置于35 ℃的恒溫人工氣候箱(RGX-250B,上海坤天儀器有限公司)中,使魚粉隨著儲(chǔ)藏時(shí)間的延長逐漸腐敗變質(zhì),在儲(chǔ)藏的過程中采集不同儲(chǔ)藏時(shí)間的魚粉作為試驗(yàn)樣本[29-30],總共選取了6個(gè)儲(chǔ)藏時(shí)間等級的魚粉樣本進(jìn)行該檢測裝置的數(shù)據(jù)采集。

        2.2 試驗(yàn)設(shè)計(jì)

        選取樣品質(zhì)量、頂空空間、氣體流量、采樣時(shí)間、清洗時(shí)間5個(gè)因素分別進(jìn)行3個(gè)不同儲(chǔ)藏時(shí)間下的單因素試驗(yàn),平行測試8次,得到5個(gè)因素的最優(yōu)水平分別為80 g、250 mL、2 L/min、40 s、80 s。

        根據(jù)單因素試驗(yàn)結(jié)果,選取對該檢測裝置影響比較大的因素,包括氣體流量、采樣時(shí)間、清洗時(shí)間3個(gè)變量為試驗(yàn)因素,其他因素則保持在最優(yōu)水平進(jìn)行BBD響應(yīng)面試驗(yàn),并得到回歸方程,優(yōu)化出影響該裝置檢測性能的最優(yōu)參數(shù),并對最優(yōu)參數(shù)進(jìn)行驗(yàn)證。因素水平編碼如表1所示。

        表1 參數(shù)優(yōu)化響應(yīng)面試驗(yàn)因素及水平

        2.3 試驗(yàn)指標(biāo)的計(jì)算

        本文所研究的數(shù)據(jù)是在電導(dǎo)比值的基礎(chǔ)上研究的,即G/0,計(jì)算公式如(1)所示,其中G為通入樣品氣體時(shí)的電導(dǎo)值,0為通入空氣時(shí)的電導(dǎo)值,該值通過通入樣品氣體時(shí)傳感器的電壓值V和通入潔凈空氣時(shí)傳感器的電壓值0計(jì)算而來,并以每個(gè)傳感器求得的電導(dǎo)比的均值為特征值,對數(shù)據(jù)進(jìn)行分析與處理,共有10個(gè)特征值。

        式中V為采樣參考電壓,V,此處為5V;0為通入空氣時(shí)傳感器響應(yīng)值,即基線值,V;V為通入采樣氣體時(shí)傳感器的響應(yīng)值,V。

        依據(jù)主成分分析方法的特性,選取表征組內(nèi)聚集程度的變異系數(shù)[31-32]與表征組間區(qū)分程度的均值相對變化率的比值來作為試驗(yàn)指標(biāo),由文獻(xiàn)[27]可知,變異系數(shù)應(yīng)小于0.15,而相對變化率應(yīng)大于0.05,計(jì)算方法如式(2)所示,所以他們之間的比值應(yīng)小于3。

        式中x為第次樣本測試均值;=8,為平行試驗(yàn)次數(shù);=10,為傳感器個(gè)數(shù);=3,為儲(chǔ)藏時(shí)間等級數(shù);y為不同儲(chǔ)藏時(shí)間等級樣品的單個(gè)傳感器均值相對變化率;為單類儲(chǔ)藏時(shí)間等級魚粉之間的平均變異系數(shù);為不同儲(chǔ)藏時(shí)間等級的魚粉樣品之間的均值平均相對變化率。

        將與的比值,定義為,為離散比,如式(2)所示。越小,說明不同儲(chǔ)藏時(shí)間等級樣品之間的區(qū)分越明顯,同一儲(chǔ)藏時(shí)間等級組內(nèi)聚集程度高,離散程度較小。

        3 結(jié)果與分析

        3.1 試驗(yàn)結(jié)果

        采用Design-Expert 8.0.6統(tǒng)計(jì)軟件中的Box-Behnken試驗(yàn)設(shè)計(jì)原理[33-36]對試驗(yàn)結(jié)果進(jìn)行響應(yīng)面回歸分析,設(shè)計(jì)三因素三水平17個(gè)試驗(yàn)點(diǎn)的響應(yīng)面分析,并重復(fù)零點(diǎn)測試5次,用來估計(jì)誤差。試驗(yàn)方案及結(jié)果如表2所示。

        表2 試驗(yàn)設(shè)計(jì)方案及結(jié)果

        3.2 試驗(yàn)分析

        利用Design-Expert軟件對表2中的數(shù)據(jù)進(jìn)行多項(xiàng)式回歸分析以及顯著性檢驗(yàn),建立該魚粉品質(zhì)檢測裝置各參數(shù)與離散比之間的回歸模型,得到回歸方程如式(4)所示。

        式中分別為氣體流量、采樣時(shí)間和清洗時(shí)間對應(yīng)的編碼值。

        從表3可以看出,模型的顯著性檢驗(yàn)=32.44,<0.000 1,表明建立的二次回歸模型達(dá)到高度顯著,失擬性檢驗(yàn)=6.29,=0.053 9>0.05,無顯著性差異,表明在試驗(yàn)范圍內(nèi)模型擬合度良好,模型的殘差可能是隨機(jī)誤差產(chǎn)生,可以用此模型和方程對氣體流量,采樣時(shí)間,清洗時(shí)間這3個(gè)因素的影響效果進(jìn)行分析和預(yù)測,并得到最佳的試驗(yàn)參數(shù)。

        表3 響應(yīng)面二次模型及其回歸系數(shù)的方差分析

        注:<0.01為極顯著,<0.05為顯著。

        Note:<0.01 is highly significant,<0.05 is significant.

        根據(jù)表3,該模型調(diào)整后的模型校正決定系數(shù)Adj為0.946 5,說明此模型可以解釋94.65%響應(yīng)值的變化,該模型與試驗(yàn)擬合程度高,試驗(yàn)誤差小。從表3中可以看出,模型的一次項(xiàng)中,因素影響顯著,其中因素影響程度極為顯著,交互作用影響極為顯著,因素影響顯著,二次項(xiàng)22對離散比均有極顯著性影響。由此可知,各影響因素對離散比的影響并不是簡單的線性關(guān)系,而是呈現(xiàn)二次函數(shù)關(guān)系。根據(jù)所選的因素水平,各因素影響強(qiáng)弱次序?yàn)椋呵逑磿r(shí)間>采樣時(shí)間>氣體流量。

        3.3 響應(yīng)面分析與優(yōu)化

        響應(yīng)面圖根據(jù)回歸方程繪制,并且是由響應(yīng)值在各試驗(yàn)因素相互作用下獲得的結(jié)果構(gòu)成的一個(gè)三維空間曲面,可以預(yù)測和檢驗(yàn)變量的響應(yīng)值以及確定變量的相互關(guān)系。當(dāng)其它變量處于中間值時(shí),根據(jù)響應(yīng)面圖分析對離散比產(chǎn)生的影響,如圖5所示,為因素對離散比影響的響應(yīng)曲面3D效果圖。

        由圖5a可知,隨著氣體流量和采樣時(shí)間的增加,離散比的值首先減小然后增大,這說明對于離散比來說,存在合適的氣體流量和采樣時(shí)間。其原因可能是由于當(dāng)氣體流量過小時(shí),待測氣體分子主要通過氣體自由擴(kuò)散至傳感器敏感元件表面,此時(shí)采樣時(shí)間若是過小,則導(dǎo)致傳感器響應(yīng)值還未達(dá)到穩(wěn)定狀態(tài)便停止了采樣,檢測結(jié)果也無法全面反映樣品的所有氣味特征;當(dāng)氣體流量較大時(shí),待測氣體被氣泵吹至傳感器敏感元件表面,此時(shí)采樣時(shí)間若較大,則進(jìn)入到氣體采樣室的樣品氣體會(huì)增加,在較短的清洗時(shí)間下,傳感器清洗則不夠徹底,從而使試驗(yàn)結(jié)果產(chǎn)生誤差。當(dāng)氣體流量在2~2.5 L/min和采樣時(shí)間在35~45 s范圍內(nèi),離散比較小。從圖5b可知以看出,隨著氣體流量的增加和清洗時(shí)間的減小,離散比首先降低然后增加,當(dāng)氣體流量較大時(shí),在同樣的采樣時(shí)間下,進(jìn)入到氣體采樣室的氣體增加,此時(shí)清洗時(shí)間較短,則吸附在傳感器上的樣品氣體無法全部被清洗干凈,殘留的氣體分子會(huì)影響下一個(gè)樣品的測試結(jié)果,導(dǎo)致不同品質(zhì)樣品的區(qū)分度不大,進(jìn)而導(dǎo)致離散比增加,當(dāng)氣體流量較小時(shí),在同樣的采樣時(shí)間下,此時(shí)進(jìn)入氣體采樣室的氣體減少,若清洗時(shí)間又較長,則會(huì)損耗傳感器,影響檢測結(jié)果。當(dāng)氣體流量在2~2.5 L/min和清洗時(shí)間在75~80 s范圍內(nèi),離散比較小。由圖5c可知,隨著采樣時(shí)間增大,清洗時(shí)間減小,離散比先減小后增大,當(dāng)采樣時(shí)間過大時(shí),在合適的氣體流量下,則進(jìn)入氣體采樣室的氣體增加,而清洗時(shí)間又比較小,則導(dǎo)致清洗不夠徹底,影響試驗(yàn)結(jié)果;當(dāng)采樣時(shí)間過小時(shí),在同樣的氣體流量下,進(jìn)入到氣體采樣室的氣體比較少,此時(shí)清洗時(shí)間又比較長,則造成了能量的浪費(fèi)以及儀器的損耗,檢測結(jié)果也會(huì)有誤差。當(dāng)采樣時(shí)間在35~40 s和清洗時(shí)間在75~80 s范圍內(nèi),離散比較小。

        離散比可以反應(yīng)該電子鼻的響應(yīng)效果,離散比越小,說明該電子鼻的組間區(qū)分效果好,組內(nèi)聚集程度高,因此在試驗(yàn)范圍內(nèi)離散比越小越好。應(yīng)用Design-Expert的Optimization功能對其進(jìn)行優(yōu)化分析,即通過對二次回歸的數(shù)學(xué)模型取一階偏導(dǎo)獲得最優(yōu)的試驗(yàn)條件,確定當(dāng)= 0.402,= –0.073,= –0.292時(shí),試驗(yàn)指標(biāo)有最小值;得到最優(yōu)參數(shù)組合:氣體流量為2.2 L/min,采樣時(shí)間為39.27 s,清洗時(shí)間為77.08 s時(shí),離散比有最小值,預(yù)測的離散比最小值為0.579 2。在實(shí)際試驗(yàn)過程中,為了方便在該裝置中設(shè)定試驗(yàn)參數(shù),現(xiàn)將優(yōu)化結(jié)果進(jìn)行圓整,圓整后的結(jié)果為氣體流量為2.2 L/min,采樣時(shí)間39 s,清洗時(shí)間77 s,此時(shí)得到的預(yù)測離散比為0.579 3。

        為了驗(yàn)證模型預(yù)測的準(zhǔn)確性,采用優(yōu)化后的參數(shù)進(jìn)行試驗(yàn),試驗(yàn)重復(fù)次數(shù)為8次,最優(yōu)參數(shù)的實(shí)際測量值為0.579 9,與模型預(yù)測值的誤差為0.10%,表明預(yù)測值和實(shí)測值具有良好的一致性,進(jìn)一步驗(yàn)證了模型的可靠性。因此,采用Box-Behnken的組合試驗(yàn)設(shè)計(jì)優(yōu)化得到的該檢測裝置的試驗(yàn)參數(shù)準(zhǔn)確可靠,具有實(shí)用價(jià)值。

        3.4 優(yōu)化方案應(yīng)用

        3.4.1 PCA和LDA分析

        在最優(yōu)參數(shù)下,對不同儲(chǔ)藏時(shí)間等級的樣品,共6個(gè)儲(chǔ)藏時(shí)間等級,重復(fù)30次共180個(gè)樣本的電導(dǎo)比均值進(jìn)行PCA和LDA分析,得到結(jié)果如圖6所示。從圖6a可以看出,第六等級樣品能明顯區(qū)分,但是其他儲(chǔ)藏時(shí)間等級樣品數(shù)據(jù)重復(fù)點(diǎn)較多,難以區(qū)分。從圖6b可以看出,LDA分類結(jié)果與PCA結(jié)果類似,但相對于PCA,LDA分析結(jié)果較好。

        圖5 各因素的交互作用對離散比影響的響應(yīng)面圖

        圖6 不同儲(chǔ)藏時(shí)間等級魚粉樣品的PCA和LDA分析

        3.4.2 逐步判別分析

        對上述180個(gè)樣本的電導(dǎo)率的均值進(jìn)行逐步判別分析,其中所屬類為樣品實(shí)際所屬的儲(chǔ)藏時(shí)間等級,預(yù)測類是由判別分析方法建立的模型預(yù)測的樣品所屬儲(chǔ)藏時(shí)間等級,所得結(jié)果如表4所示。由表4可知,前5個(gè)類別出現(xiàn)誤判,其他等級分類正確,總正確率為89.4%,可見誤判主要出現(xiàn)在中間的幾個(gè)儲(chǔ)藏時(shí)間等級中,而位于兩端儲(chǔ)藏時(shí)間等級的樣品識(shí)別率較高,該檢測裝置基本能將不同儲(chǔ)藏時(shí)間等級的魚粉樣本區(qū)分開來,后續(xù)還需進(jìn)一步優(yōu)化特征值以提高正確率。

        表4 不同儲(chǔ)藏時(shí)間等級的魚粉樣品的逐步判別分析結(jié)果

        4 結(jié) 論

        1)本文設(shè)計(jì)的便攜式魚粉品質(zhì)檢測裝置主要包括三大部分,分別為氣體采集和氣路傳輸部分,硬件單元測控部分以及軟件界面編程部分。其中氣體采集和氣路傳輸部分的關(guān)鍵部件是氣體反應(yīng)室,主要用于傳感器與樣品氣體發(fā)生反應(yīng),實(shí)現(xiàn)氣體的進(jìn)入與排出。硬件單元測控部分的關(guān)鍵部件為位于氣體反應(yīng)室的10個(gè)氣體傳感器,用于與樣品氣體發(fā)生化學(xué)反應(yīng),得到樣品氣體的“指紋信息”,通過ARPI600模數(shù)轉(zhuǎn)換芯片將不同品質(zhì)樣品氣味轉(zhuǎn)化為電信號,并采集數(shù)據(jù)。軟件界面編程部分則以樹莓派為核心,采用跨平臺(tái)的qt creator界面編程軟件實(shí)現(xiàn)數(shù)據(jù)實(shí)時(shí)采集和存儲(chǔ)。

        2)以離散比為試驗(yàn)指標(biāo),以對結(jié)果影響較大的氣體流量、采樣時(shí)間、清洗時(shí)間為因素進(jìn)行試驗(yàn),并用Design-expert進(jìn)行響應(yīng)面分析,得到影響強(qiáng)弱關(guān)系為清洗時(shí)間>采樣時(shí)間>氣體流量,且隨著氣體流量和采樣時(shí)間的增加,離散比呈現(xiàn)先減小后增加的趨勢;隨著氣體流量增大,清洗時(shí)間減小,離散比則先減小后增大;隨著采樣時(shí)間增大,清洗時(shí)間減小,離散比先減小后增大,綜合考慮各因素確定最佳參數(shù)組合為氣體流量2.2 L/min,采樣時(shí)間39 s,清洗時(shí)間77 s,此時(shí)離散比實(shí)測值為 0.579 9。

        3)在最優(yōu)參數(shù)下,對不同儲(chǔ)藏時(shí)間等級的魚粉樣品進(jìn)行檢測,得到不同等級逐步判別的正確度為89.4%,可以實(shí)現(xiàn)對不同品質(zhì)的魚粉進(jìn)行檢測,相比于其他檢測方法,通過該檢測裝置檢測,檢測結(jié)果快速、準(zhǔn)確、可靠,可為類似品質(zhì)檢測裝置的研究提供相應(yīng)參考。

        [1] 劉輝,牛智有. 基于電子鼻的魚粉中揮發(fā)性鹽基氮檢測模型比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(4):322-326. Liu Hui, Niu Zhiyou. Comparison of total volatile basic nitrogen detection models in fishmeal based on electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(4): 322-326. (in Chinese with English abstract)

        [2] 劉輝,牛智有. 基于虛擬儀器的魚粉新鮮度電子鼻測量系統(tǒng)[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,29(6):794-797. Liu Hui, Niu Zhiyou. Design of electronic nose system based on virtual instrument technology to determine fishmeal freshness[J]. Journal of Huazhong Agricultural University, 2010, 29(6): 794-797.(in Chinese with English abstract)

        [3] 曹小華,蔡懋成,余維三,等. 近紅外光譜分析技術(shù)在魚粉新鮮度檢測中的應(yīng)用研究[J]. 廣東飼料,2018,27(3):42-45. Cao Xiaohua, Cai Maocheng, Yu Weisan, et al. Near infrared spectroscopy analysis technology in study on application of fish meal freshness detection[J]. Guangdong Feed, 2018, 27(3): 42-45. (in Chinese with English abstract )

        [4] 王莉,牛群峰,趙紅月,等. 基于電子舌的不同儲(chǔ)藏期紅魚粉區(qū)分與新鮮度評價(jià)[J]. 飼料工業(yè),2015,36(3):52-55. Wang Li, Niu Qunfeng, Zhao Hongyue, et al. Discrimination and freshness evaluation of fishmeal based on electronic tongue[J]. Feed Industry, 2015, 36(3): 52-55. (in Chinese with English abstract )

        [5] 文韜,鄭立章,龔中良,等. 吹掃式仿生嗅覺檢測裝置的設(shè)計(jì)與性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):251-258. Wen Tao, Zheng Lizhang, Gong Zhongliang, et al. Design and performance experiment of bionic olfactory detection device using purging method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 251-258. (in Chinese with English abstract)

        [6] Kriengkri T, Theeraphop T, Noppon L, et al. Evaluation of bacterial population on chicken meats using a briefcase electronic nose[J]. Biosystems Engineering, 2016, 151: 116-125.

        [7] Jiang Jinghao, Li Jian, Zheng Feixiang, et al. Rapid freshness analysis of mantis shrimps () by using electronic nose[J]. Food Measure, 2016, 10: 48–55.

        [8] 陳東杰,姜沛宏,張長峰,等. 基于電子鼻與統(tǒng)計(jì)學(xué)方法的海鱸魚新鮮度品質(zhì)預(yù)測[J]. 食品工業(yè)科技,2018,39(17):235-239. Chen Dongjie, Jiang Peihong, Zhang Changfeng, et al.Freshness quality prediction of latelabrax japonicas based on electronic nose and statistic analysis[J]. Science and Technology of Food Industry, 2018, 39(17): 235-239. (in Chinese with English abstract)

        [9] Marek G, Jolanta W, Marzena G W, et al. Application of electronic nose with MOS sensors to prediction of rapeseed quality[J]. Measurement, 2017(103): 227-234.

        [10] Rakesh K R, Rohit U, Hari N M. Storage quality assessment of shelled peanuts using non-destructive electronic nose combined with fuzzy logic approach[J]. Postharvest Biology and Technology, 2017, 132: 43-50.

        [11] Sanaeifar A, Mohtasebi S S, Ghasemi-Varnamkhasti M, et al. Development and application of a new low cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM) [J]. Czech Journal of Food Sciences, 2014, 32(6): 538-548.

        [12] Sajad K, Saeid M, Mahdi G V. A portable electronic nose as an expert system for aroma-based classification of saffron[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 156: 148-156.

        [13] Kriengkri T, Yaowapa L, Chatchawal W. Identification of adulteration in uncooked Jasmine rice by a portable low-cost artificial olfactory system[J]. Measurement, 2017, 108: 67-76.

        [14] Tang Kea-Tiong, Chiu Shih-Wen, Pan Chih-Heng, et al. Development of a portable electronic nose system for the detection and classification of fruity odors [J]. Sensors, 2010, 10: 9179-9193.

        [15] 程紹明,王俊,王永維,等. 基于電子鼻技術(shù)的不同特征參數(shù)對番茄苗早疫病病害區(qū)分效果影響的研究[J]. 傳感技術(shù)學(xué)報(bào),2014,27(1):1-5. Chen Shaoming, Wang Jun, Wang Yongwei, et al. Research on distinguishing tomato seedling Infected with early blight disease using different characteristic parameters by electronic nose[J]. Chinese Journal of Sensors and Actuators, 2014, 27(1): 1-5. (in Chinese with English abstract)

        [16] 劉軍令. 煙草智能烤房系統(tǒng)中電子鼻關(guān)鍵技術(shù)研究[D]. 重慶:重慶大學(xué),2015. Liu Junling. Study on the Key Technology of Electronic Nose in Intelligent Tobacco Barn Systems[D]. Chongqing: Chongqing University, 2015. (in Chinese with English abstract)

        [17] 張紅梅,鄒光宇,王淼森,等. 基于傳感器陣列多特征優(yōu)化融合的茶葉品質(zhì)檢測研究[J]. 傳感技術(shù)學(xué)報(bào),2018,31(3):491-496. Zhang Hongmei, Zou Guangyu, Wang Miaosen, et al. Detection method for tea quality using sensor array coupled with multi-feature optimization fusion [J]. Chinese Journal of Sensors and Actuators, 2018, 31(3): 491-496. (in Chinese with English abstract)

        [18] 閆嘉. 基于電子鼻技術(shù)的人體傷口感染檢測系統(tǒng)構(gòu)建及算法研究[D]. 重慶:重慶大學(xué),2012. Yan Jia. System Construction and Algorithm Research in Human Wound Infection Detection Based on Electronic Nose Technology[D]. Chongqing: Chongqing University, 2012. (in Chinese with English abstract)

        [19] Sibila O, Garcia-Bellmunt L, Giner J, et al. Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease[J]. Respiratory Medicine, 2014, 108(11): 1608-1614.

        [20] Lim J H, Park J, Oh E H, et al. Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood[J]. Advanced Healthcare Materials, 2014, 3(3): 360-366.

        [21] Rosarito C T, Mabel R, Nilda J de R, et al.The potential of a portable point-of-care electronic nose to diagnose tuberculosis [J]. Journal of Infection, 2017(8): 1-7.

        [22] 洪雪珍,王俊. 牛肉品質(zhì)檢測中電子鼻參數(shù)的優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(9):125-131.Hong Xuezhen, Wang Jun. Parameters optimization of electronic nose in detection of beef freshness [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 125-131. (in Chinese with English abstract)

        [23] 孔麗娜. 電子鼻技術(shù)在草魚鮮度及風(fēng)味分析的應(yīng)用研究[D]. 上海:華東理工大學(xué),2015. Kong Lina. Application of Electronic Nose in Freshness and Flavor Analysis of Grass Carp[D]. Shanghai: East China University of Science and Technology, 2015. (in Chinese with English abstract)

        [24] 梁宏增,余雋,孫長宇,等. 流速對半導(dǎo)體氣體傳感器響應(yīng)的影響分析[J]. 儀表技術(shù)與傳感器,2012(5):1-4. Liang Hongzeng, Yu Jun, Sun Changyu, et al. Influence of gas flow on response of semiconductor gas sensor [J]. Instrument Technique and Sensor, 2012(5): 1-4. (in Chinese with English abstract)

        [25] 亓培鋒,孟慶浩,井雅琪,等. 用于白酒識(shí)別的電子鼻數(shù)據(jù)分析與參數(shù)優(yōu)化[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2015,48(7):643-651. Qi Peifeng, Meng Qinghao, Jing Yaqi, et al. Data analysis and parameters optimization of electronic nose systems for Chinese liquors recognition[J]. Journal of Tianjin University: Science and Technology, 2015, 48(7): 643-651. (in Chinese with English abstract)

        [26] 龍君,朱曉瓊,楊涓,等. 電子鼻對煙用香精香料檢測參數(shù)的研究[J]. 化學(xué)研究與應(yīng)用,2014,26(3):395-400. Long Jun, Zhu Xiaoxiong, Yang Juan, et al. Study on parameters of electronic nose measuring tobacco flavors and fragrances[J]. Chemical Research and Application, 2014, 26(3): 395-400. (in Chinese with English abstract)

        [27] 張軍,李小昱,王為,等. 電子鼻檢測鰱魚新鮮度的試驗(yàn)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(4):129-132. Zhang Jun, Li Xiaoyu, Wang Wei, et al. Optimization of experiment parameters for using electronic nose to evaluate freshness of silver carp[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4): 129-132. (in Chinese with English abstract)

        [28] 李江勇. 基于ARM9的嵌入式電子鼻系統(tǒng)研究與實(shí)現(xiàn)[D].廣州:廣東工業(yè)大學(xué),2012. Li Jiangyong. Research and Implementationan Embedded Electronic Nose System Based on ARM9[D]. Guangzhou: Guangdong University of Technology, 2012. (in Chinese with English abstract)

        [29] 郭培源,徐盼,董小棟,等. 基于嵌入式的臘肉檢測手持終端系統(tǒng)的研制[J]. 食品與機(jī)械,2016,32(8):38-41. Guo Peiyuan, Xu Pan, Dong Xiaodong, et al. Research and realization on bacon detection on embedded handheld terminal[J]. Food & Machinery, 2016, 32(8): 38-41. (in Chinese with English abstract)

        [30] 王銨靜. 不同儲(chǔ)存方法對魚粉的影響及養(yǎng)殖效果評價(jià)[D]. 湛江:廣東海洋大學(xué),2017. Wang Anjing. Effects of Different Storage Methods on Fish Meal and the Assessment of Culture Efficiency[D]. Zhanjiang: Guangdong Ocean University, 2017. (in Chinese with English abstract)

        [31] 徐克明,王俊,鄧凡霏,等. 用于山核桃陳化時(shí)間檢測的電子鼻傳感器陣列優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):281-287. Xu Keming, Wang Jun, Deng Fanfei, et al. Optimization of sensor array of electronic nose for aging time detection of pecan[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 281-287. (in Chinese with English abstract)

        [32] Sylvie R, Gustaf F, Pierre G, et al. Optimisation of electronic nose measurements. Part II: Influence of experimental parameters[J]. Journal of Food Engineering, 1999, 39(1):9-15.

        [33] 王功亮,姜洋,李偉振,等. 基于響應(yīng)面法的玉米秸稈成型工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(13):223-227. Wang Gongliang, Jiang Yang, Li Weizhen, et al. Process optimization of corn stover compression molding experiments based on response surface methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 223-227. (in Chinese with English abstract)

        [34] 欒慶祥,趙楊,周欣,等. 單因素試驗(yàn)結(jié)合響應(yīng)面分析法優(yōu)化杜仲最佳提取工藝[J]. 藥物分析雜志,2013,33(5):859-865. Luan Qingxiang, Zhao Yang, Zhou Xin, et al. Optimization on extraction technology forby single- factor experiment combined with response surface methodology[J]. Chin J Pharm Anal, 2013, 33(5): 859-865. (in Chinese with English abstract)

        [35] 田旭靜,段鵬慧,范三紅,等. 響應(yīng)面法優(yōu)化酶解藜麥糠蛋白制備抗氧化肽工藝[J]. 食品科學(xué),2018,39(10):158-164. Tian Xujing, Duan Penghui, Fan Sanhong, et al. Response surface methodology for optimization of hydrolysis conditions for preparing antioxidant peptides from quinoa bran protein[J]. Food Science, 2018, 39(10): 158-164. (in Chinese with English abstract)

        [36] 施麗莉,胡志超,顧峰瑋,等. 耙齒式殘膜回收機(jī)自動(dòng)脫膜機(jī)構(gòu)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(18):11-18. Shi Lili, Hu Zhichao, Gu Fengwei, et al. Design on automatic unloading mechanism for teeth type residue plastic film collector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 11-18. (in Chinese with English abstract)

        Design and operating parameter optimization of portable detection device for fish meal quality

        Li Pei1, Niu Zhiyou1,2※, Tan Henqun1,2, Liu Ming1, Zhang Weijian1

        (1.430070; 2.430070)

        Fish meal is rich in protein and fat and is the main animal-derived feed material. In the process of transportation and storage, the fish meal can be easily to deteriorate, resulting in the reduction of its nutritional components. This is not only endangers the normal reproduction and health of animals, but also poses certain potential safety hazards to the safety of animal-derived food and human health. It is necessary to carry out an effective detection for quality of animal-derived feed. In recent years, bionic olfaction technology has developed rapidly, it can quickly detect the quality of products, compared with near infrared spectroscopy and traditional physical and chemical index detection methods, it is faster and more accurate, but it is rarely used in the quality detection of fish meal. Therefore, in order to solve the above problems, a portable detection device on quality of fish meal has been developed in this paper. The hardware part of the device is mainly composed of a gas acquisition and transmission module, a control processing storage module, a data acquisition module, and a sensor array module, which the gas acquisition and transmission module includes a sample supplement gas cylinder, a sample gas generation chamber, an activated carbon purification bottle, two two-position two-way electromagnetic valves, a micro air pump, a gas flowmeter, a gas sampling chamber, and a one-way valve. In the software part, the strawberry pie is the core, qt creator graphical programming software across platforms was selected, and the real-time data acquisition display and storage part was mainly designed. The key component was the 10-bit ARPI600 data acquisition module. The device could basically realize the quality detection of fish meal, and the detection result was relatively accurate. In order to obtain the detection performance of the device, the test parameters of the device needed to be optimized. First, fresh fish meal was placed in a 35 ℃ thermostatic artificial climate box to make it decay gradually at the storage time. Fish meal of different levels was collected as the test sample during the storage process, and a total of six types of fish meal samples which was at different storage times were selected for the samples of the test. In this paper, it selected the factors that included gas flow, sampling time and cleaning time that had a great influence on the detection results, taking the dispersion ratio as an index, the optimal parameters were obtained through optimization analysis by using response surface method and design - expert software, and the feasibility and detection performance of the detection device for fish meal quality under the optimal parameters were verified. The test results showed that the gas flow rate, sampling time and cleaning time were all significant factors, and the primary and secondary order of factors was as follow: Cleaning time, sampling time and gas flow, and the interaction between them was significant. With the increase of gas flow and sampling time, the dispersion ratio tended to decrease first and then increase, and when the gas flow was in the range of 2-2.5 L/min and the sampling time was in the range of 35-45 s, the dispersion ratio was small. As the gas flow increased, the cleaning time decreased, while the dispersion ratio decreased first and then increased. When the gas flow rate was 2-2.5 L/ min and the cleaning time was in the range of 75-80 s, the dispersion ratio was small. As the sampling time increased, the cleaning time decreased, the dispersion ratio decreased first and then increased, and when the sampling time was in the range of 35-40 s and the cleaning time was in the range of 75-80 s, the dispersion ratio was small. In considering of all factors, the best parameters were 2.2 L/min of gas flow, 39 s of sampling time and 77 s of cleaning time. At this time, the dispersion ratio was the smallest, which was 0.579 9. Under the optimal parameters, fish meal samples with different storage time were tested, and the accuracy of different storage time discrimination was 89.4%, which could realize the detection of quality of fish meal and provide data reference and technical support for the subsequent research on the quality detection device.

        quality control; nondestructive detection; parameters optimization; response surface; fish meal

        2018-10-09

        2019-01-30

        中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2662018PY081)

        李 培,博士生,主要從事農(nóng)產(chǎn)品加工技術(shù)方面研究。Email:huanonglipei8@163.com

        牛智有,博士,教授,主要從事農(nóng)產(chǎn)品加工技術(shù)與裝備研究。 Email:nzhy@mail.hzau.edu.cn

        10.11975/j.issn.1002-6819.2019.08.036

        S24

        A

        1002-6819(2019)-08-0308-08

        李 培,牛智有,譚鶴群,劉 鳴,張偉健.便攜式魚粉品質(zhì)檢測裝置的設(shè)計(jì)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):308-315. doi:10.11975/j.issn.1002-6819.2019.08.036 http://www.tcsae.org

        Li Pei, Niu Zhiyou, Tan Henqun, Liu Ming, Zhang Weijian.Design and operating parameter optimization of portable detection device for fish meal quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 308-315. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.036 http://www.tcsae.org

        猜你喜歡
        魚粉電子鼻氣體
        遠(yuǎn)離有害氣體
        魚粉普遍上漲100~200元/噸,背后“推手”是什么?
        瘋狂!直擊魚粉飆漲,與國外魚粉市場緣何倒掛?
        二維定常Chaplygin氣體繞直楔流動(dòng)
        魚粉:秘魯A季捕撈良好,國內(nèi)外魚粉市場穩(wěn)定為主
        魚粉:秘魯B季捕撈良好,國內(nèi)外魚粉價(jià)格下滑
        電子鼻咽喉鏡在腔鏡甲狀腺手術(shù)前的應(yīng)用
        吃氣體,長大個(gè)
        飛到火星去“聞味兒”——神奇的電子鼻
        鋁合金三元?dú)怏w保護(hù)焊焊接接頭金相
        焊接(2015年8期)2015-07-18 10:59:14
        亚洲国产系列一区二区| 99久久99久久久精品久久| 亚洲日产国无码| 香港三级日本三韩级人妇久久| 国产一区二区免费在线观看视频| 91三级在线观看免费| 中文字幕乱码无码人妻系列蜜桃| 久久无码高潮喷水| 亚洲成AV人久久| 亚洲综合在不卡在线国产另类 | 一本久久a久久免费综合| 麻豆成人精品国产免费| 国产V日韩V亚洲欧美久久| 色婷婷一区二区三区四| 亚洲成av人片一区二区密柚| 亚洲日本中文字幕天天更新| 少妇无码av无码去区钱| 国产精品一区二区三区成人| 亚洲国产亚综合在线区| 一区二区传媒有限公司 | 四川丰满少妇被弄到高潮| 亚洲一区二区三区在线观看播放 | 久久精品国产久精国产| 国产精品亚洲专区无码web | 欧美性videos高清精品| 国产精品女同学| 国产老熟女精品一区二区| 亚洲看片lutube在线观看| 久久久亚洲经典视频| 在线观看日本一区二区三区| 热99re久久精品这里都是精品免费| 丰满女人又爽又紧又丰满| 在线偷窥制服另类| 一区二区三区亚洲视频| 久久亚洲av无码精品色午夜| 无码人妻丰满熟妇片毛片| 国产精品乱子伦一区二区三区| 91久久国产香蕉熟女线看| 成人综合网站| AV无码一区二区三区国产| 亚洲国产综合精品一区|