周思琪,李佳琦,杜爾登*,李 淼,劉 翔
?
UV/Cl工藝對三氯生的去除與降解機理研究
周思琪1,李佳琦1,杜爾登1*,李 淼2,劉 翔2
(1.常州大學環(huán)境與安全工程學院,江蘇 常州 213164;2.清華大學環(huán)境學院,北京 100084)
對UV/Cl高級氧化工藝降解水中廣譜抗菌劑三氯生(TCS)進行研究,對比單一UV、單一Cl和UV/Cl工藝對TCS的去除效果.考察UV光強、余氯初始濃度、溶液pH值和氨氮濃度等因素對反應的影響,探究TCS在UV/Cl工藝中的降解機理,評估其生態(tài)風險.結果表明,與單一UV、單一Cl相比,TCS在UV/Cl工藝中降解效果較好,反應符合準一級反應動力學,降解速率常數隨UV光強、余氯初始濃度增大而增大,隨NH4+-N濃度的增加而減小.基于HRMS Q-TOF解析出17種中間產物,提出了降解反應路徑.發(fā)光細菌毒性分析和ECOSAR預測均表明,TCS在UV/Cl工藝中產生毒性較高的中間產物,隨著反應的進行,產生了毒性較低的中間產物,生態(tài)環(huán)境風險得以減少.
三氯生(TCS);UV/Cl;高級氧化工藝;影響因素;降解機理;毒性評價
藥品和個人護理用品(PPCPs)包括各種藥用化合物,以及日常個人護理用品,如化妝品、殺菌劑、洗護用品、芳香劑等,涵蓋范圍廣泛[1-2].
三氯生(TCS)是一種典型的PPCPs類新興污染物,作為廣譜抗菌劑,廣泛應用于生活用品中.TCS全球每年產量約1500t,其中96%以上使用后排入污水系統并最終進入環(huán)境[3].研究表明, 在河流、湖泊、海洋、沉積物、土壤、甚至哺乳動物體內檢測出TCS[4].TCS對淡水水生物種(綠藻、水蚤、魚類)具有很高的毒性,會引起細菌耐藥性、內分泌紊亂,甚至增加致癌物的形成[5].因此,TCS對水生生物和人體健康的影響不容忽視.
UV/Cl工藝利用紫外線照射氯產生羥基自由基(·OH)和氯自由基(·Cl)[6-9],兩者結合,能夠有效去除有機污染物.UV/Cl工藝對典型PPCPs類污染物,如布洛芬、卡馬西平、莠去津等都有良好的去除效果[10-11].作為一種新型的高級氧化工藝,UV/Cl工藝在水處理方面具有潛在的應用前景.
本研究采用UV/Cl高級氧化工藝降解TCS,考察不同因素(UV光強、余氯初始濃度、溶液pH值、氨氮濃度)對TCS降解效果的影響,解析反應過程中的降解中間產物,評價TCS及其中間產物的生態(tài)風險,以期為水中TCS的去除和風險評價提供理論依據,為水質安全提供技術保障.
TCS(色譜純)購自于阿拉丁(上海),實驗所配制儲備液濃度4mg/L. NaClO(有效氯含量6%~14%)購自于阿拉丁(上海),使用DPD分光光度法測定游離余氯濃度,儲備液游離余氯濃度為621mg/L.甲醇(HPLC級)購自于Sigma公司(美國).其他藥劑(NH4)2SO4、NaOH、HCI、Na2HPO4·12H2O、KH2PO4、Na2SO3購自上海國藥集團,均為分析純.實驗用水均采用超純水(電導率18.3MΩ·cm).
本實驗的UV光反應裝置采用波長254nm的UV汞燈(上海飛利浦),溶液配制在40mL表面皿中,通過磁力攪拌器(HJ-6,江蘇金怡)確保反應均勻.調節(jié)燈管與反應液表面的距離來改變UV強度.通過紫外輻射計(UV-B,北師大光電儀器廠)確定光強.
取20mL濃度為4mg/L的TCS溶液,使用0.2mol/L磷酸鹽緩沖液、氫氧化鈉和稀鹽酸調節(jié)溶液pH值.然后投加1~5mg/L的NaClO溶液于TCS溶液中,打開UV汞燈,開始降解反應.在不同反應時間取樣,立即投加過量Na2SO3溶液(5g/L)終止反應,用HPLC-MS/MS(Thermo TSQ quantum Access Max)測定剩余TCS濃度.考察單一UV、單一Cl和UV/Cl工藝對TCS的去除效果的影響,探究不同因素(UV光強、余氯初始濃度、溶液pH值、氨氮濃度)對UV/Cl工藝降解TCS的影響.所有反應均進行3次平行實驗,取平均值.
使用HPLC-MS/MS測定剩余TCS濃度,色譜條件:Thermo Accucore C18色譜柱(3mm×50mm,2.6 μm); 采用梯度洗脫程序,流動相為水和甲醇,流速0.6mL/min;柱溫25℃.質譜條件:SRM掃描,負離子模式,TCS子母離子對/為286.8/35.3,轟擊電壓43V.
根據美國EPA 1694標準方法[12],對TCS反應液進行固相萃取預處理.
使用HRMS Bruker Impact II Q-TOF質譜儀(Bruker Daltonics Inc, USA)鑒別降解中間產物,色譜條件為:Waters HSS T3C18色譜柱(2.1mm×50mm, 1.7μm);流動相為甲醇和水;質譜條件:負離子模式, CID碎片模式,碰撞能量值(CE%)20%~50%.
選用費氏弧菌()作為指示細菌進行急性毒性實驗,考察UV/Cl工藝過程中TCS及其中間產物的毒性變化.采用生物毒性分析儀(ATD- P1,北京金達清創(chuàng))測定發(fā)光細菌的發(fā)光強度,利用相對抑制率評估急性毒性,每個樣品測定3組平行數據,前后設置2組空白對照.由式(1)計算發(fā)光細菌發(fā)光強度的相對抑制率():
式中:L為樣品發(fā)光強度;0為陰性對照發(fā)光強度.
在光強1000 μW/cm2,TCS初始濃度4mg/L,余氯初始濃度2mg/L,溶液pH值為7.0條件下,分別考察單一UV、單一Cl和UV/Cl工藝對TCS降解的影響,并用準一級反應動力學方程擬合實驗數據.結果見圖1和表1.
圖1 單一UV、單一Cl、UV/Cl對TCS降解的影響 Fig.1 Effect of single UV photolysis, single chlorination, the UV/Chlorine process on TCS degradation
表1 不同工況下TCS的準一級反應動力學模型參數 Table 1 Parameters of pseudo-first-order kinetics at different conditions of TCS degradation
由圖1和表1可知,反應300s, TCS在單一UV和單一Cl條件下分別去除67.5%和77.3%.而在UV/Cl工藝中去除率達100%.與單一UV,單一Cl相比,UV/Cl工藝明顯提高TCS的去除率.由式(2)、(3)得, TCS的3種降解反應均符合準一級反應,反應速率常數分別為0.0032,0.0045和0.0082s-1,反應相關系數2為0.9822,0.9925和0.9770.由此可知,TCS在UV/Cl工藝中的去除效果最好.
式中:[TCS]表示時刻反應體系中TCS濃度, mg/L;[TCS]0表示TCS初始濃度,mg/L;為準一級表觀動力學速率常數,s-1.
ClO
-
+H
2
O?HClO+OH
-
(4)
由式(4)、(5)可知,NaClO在水溶液中以HClO和ClO-2種形式存在.經UV照射,HClO/CIO-可以生成·OH和·Cl兩種自由基,其中·OH是非選擇性氧化劑,能夠與有機基團反應, ·Cl是強氧化劑,對親電官能團具有較高的反應活性[6,13-14].兩者結合加速了對TCS的氧化降解.
考察TCS初始濃度4mg/L,余氯初始濃度2mg/L,溶液pH值為7.0的條件下,不同光強對TCS反應的影響,結果見圖2和表2.
圖2 UV光強對UV/Cl工藝降解TCS的影響 Fig.2 Effect of UV intensity on TCS degradation by the UV/chlorine process
圖2和表2表明,光強對氯氧化TCS的影響效果顯著.隨著光強的增強,反應速率常數逐漸增加.當光強從0增加到2000μW/cm2時,反應速率常數由0.0042s-1升高為0.0115s-1.半衰期也由105.5s下降到34.4s.主要因為光強影響自由基的生成,光強增大,產生的自由基增多.在余氯初始濃度一定的條件下,單位時間內光強越大,與TCS反應的自由基越多.從而加快TCS的降解反應速率.此外,反應速率常數和光強具有明顯的線性相關性(圖3).李青松等[15]使用紫外/過硫酸鈉(UV/SPS)降解TCS具有相似的結論.
表2 不同UV光強下TCS的準一級反應動力學模型參數 Table 2 Parameters of pseudo-first-order kinetics of TCS degradation at different UV intensities
圖3 UV光強對反應速率常數的影響 Fig.3 Influence of different UV intensities on the
改變余氯初始濃度,考察其對TCS降解的影響,其他條件:TCS初始濃度4mg/L,光強500 μW/cm2,溶液pH值為7.0.結果見圖4和表3.
從圖4和表3可知,余氯初始濃度增加,TCS反應加快,反應速率常數逐漸增大.當溶液中余氯濃度從1mg/L增加至5mg/L,反應速率由0.0059s-1增加為0.0138s-1.半衰期也由105.2s減小到21.1s.擬合余氯初始濃度和反應速率常數,相關系數為0.9812,線性關系良好(圖5).
圖4 余氯濃度對UV/Cl工藝降解TCS反應的影響 Fig.4 Effect of free chlorine residual on TCS degradation by the UV/chlorine process
表3 不同余氯濃度下準一級反應動力學模型參數 Table 3 Parameters of pseudo-first-order kinetics of TCS degradation at various initial residual chlorine dose
TCS初始濃度一定時,余氯初始濃度增加即生成的HClO數量增加,促使產生更多的·OH和·Cl,從而加速TCS的氧化反應速率[16].
圖5 余氯初始濃度對反應速率常數的影響 Fig.5 Influence of various initial residual chlorine dose on the
在光強500μW/cm2,TCS初始濃度4mg/L,余氯初始濃度2mg/L條件下,用氫氧化鈉和鹽酸調節(jié)pH值,考察不同溶液pH值對反應的影響.結果見圖6和表4.
圖6 pH值對UV/Cl工藝降解TCS反應的影響 Fig.6 Effect of pH value on TCS degradation by the UV/chlorine process
表4 不同pH值下TCS的準一級反應動力學模型參數 Table 4 Parameters of pseudo-first-order kineticsof TCS degradation at different pH values
由圖6和表4可知, UV/Cl工藝中,TCS在不同溶液pH值內均有去除效果,且在堿性條件中的去除效果優(yōu)于酸性條件.當溶液pH值從5.0增加到9.0時,反應速率常數由0.0017s-1升高到0.0055s-1.隨著溶液pH值增大,TCS去除率明顯升高,在溶液pH值為9.0時去除效果最好.
在酚類親電取代反應中,反應速率與芳香烴的形態(tài)有關.離子態(tài)物質的親電性較強,與自由基的反應速率是分子態(tài)的104~105倍[17]. TCS的pKa為8.1,當溶液呈堿性時,TCS以離子態(tài)的形式存在,而TCS在酸性溶液中大部分以分子態(tài)的形式存在,故堿性溶液中TCS的降解速率高于酸性溶液中[18].
考察光強500μW/cm2,TCS初始濃度4mg/L,余氯初始濃度2mg/L,溶液pH值為7.0時,氨氮濃度對反應的影響.結果見圖7和表5.
由圖7和表5可知,隨著氨根離子濃度的增加, TCS在UV/Cl工藝中的降解速率逐漸降低.當氨根離子濃度從0升高到4mg/L,反應速率常數從0.0044s-1減少至0.0016s-1.900s內TCS的去除率從98.7%下降至71.7%.氨氮濃度和反應速率常數成明顯負相關(圖8),說明溶液中氨根離子對TCS的去除有明顯抑制作用.溶液中的氨根離子先與NaClO溶液反應,降低HClO/CIO-的濃度,從而減少·OH和·Cl的生成量,因此TCS在UV/Cl工藝中的反應速率降低[19].
圖7 氨氮濃度對UV/Cl工藝降解TCS反應的影響 Fig.7 Effect of ammonia concentration on TCS degradation by the UV/chlorine process
表5 不同氨氮濃度下TCS的準一級反應動力學模型參數 Table 5 Parameters of pseudo-first-order kinetics of TCS degradation at different ammonia concentrations
圖8 氨氮濃度對反應速率常數的影響 Fig.8 Influence of ammonia concentrations on the
表6 TCS及降解中間產物質譜參數 Table 6 Mass spectrum parameters of TCS and its intermediates
續(xù)表6
序號化合物保留時間(min)分子式[M-H]-結構式 理論質荷比(m/z)實際質荷比(m/z)?(10-6ppm) 9Pr254-b12.3C12H8Cl2O2252.9829252.98310.8 10Pr236-a6.6C12H9ClO3235.0167235.01690.9 11Pr236-b12.3C12H9ClO3235.0167235.01680.4 12Pr250-a14.4C12H7ClO4248.9960248.99600.0 13Pr250-b16C12H7ClO4248.9960248.99610.4 14Pr1249.1C6H4O3123.0088123.0087-0.8 15Pr144-a12.3C6H5ClO2142.9905142.99060.7 16Pr144-b13.2C6H5ClO2142.9905142.99060.7 17Pr162-a0.9C6H4Cl2O160.9566160.95670.6 18Pr162-b1.3C6H4Cl2O160.9566160.9564-1.2
圖9 TCS、氯代TCS、羥基化TCS的色譜圖、二級質譜 Fig.9 Chromatogram and MS2spectrums of TCS ,TCS-Cl and TCS-OH
圖10 TCS在UV/Cl工藝中的可能反應路徑 Fig.10 Proposed reaction pathway of TCS by the UV/chlorine process
使用HRMS Q-TOF進行檢測,解析出17種降解中間產物.結果見表6和圖9.從圖9a、圖9b可以看出,TCS出峰時間為12.3min,分子離子的質荷比/為286.9442,有2個主要碎片離子,/分別為214.9907和141.9832.
在反應過程中,TCS主要發(fā)生氯代反應和羥基加成反應.TCS苯環(huán)上的氫原子與·Cl進行親核取代反應,生成氯代化合物.一氯代產物具有2個同分異構體,保留時間分別為8.3min(TCS-Cl-a)和11.6min (TCS-Cl-b)(圖9c、圖9d、圖9e).此外,·Cl進一步取代苯環(huán)上的H產生二氯代產物(TCS-2Cl).這與Fiss 等[20]鑒定的TCS氯代產物相同,說明氯代產物是TCS進行氯氧化反應的主要產物.
在UV照射、自由氯的聯合作用下,·OH誘導TCS進行羥基加成反應,生成羥基化產物TCS-OH (圖9f、圖9g).繼而發(fā)生氯取代反應,生成Pr338-a和Pr338-b(表6).同樣,TCS-Cl也可能發(fā)生羥基加成反應生成Pr338-a和Pr338-b.隨后,TCS及氯代產物發(fā)生脫氯氫化、脫氯羥基化、羥基加成、脫氫等[17]反應,生成具有同分異構體的Pr254-a、Pr254-b、Pr236-a、Pr236-b、Pr250-a和Pr250-b.在·OH的親核作用下Pr250醚鍵斷裂,羥基化生成單個苯環(huán)的小分子羥基化產物.Pr338等含氯化合物也可能發(fā)生脫氯,醚基斷裂,羥基化等反應生成單環(huán)產物Pr144-a、Pr144-b、Pr162-a、Pr162-b和Pr124.這些中間產物與已有報道的降解TCS反應中間產物相同,表明TCS在不同工藝中降解具有相似的降解路徑[21-23].基于以上分析,提出TCS降解反應機制,見圖10.
在光強500μW/cm2,TCS初始濃度4mg/L,余氯初始濃度2mg/L,溶液pH值為7.0的典型條件下,進行降解反應.利用費氏弧菌的發(fā)光強度指示溶液中TCS及其中間產物的毒性,毒性大小用發(fā)光抑制率(%)表示,見圖11.反應前,TCS溶液對發(fā)光細菌的相對抑制率高達99%.反應300s時,TCS去除率為83.2%,但相對抑制率僅下降13.5%.當反應進行到480s時,TCS幾乎完全降解,去除率為93.6%.此時TCS反應液平均抑制率降低為49.7%.延長反應時間至1200s,抑制率逐漸降低,最終抑制率降為36.8%.反應前期,TCS反應液的相對抑制率沒有隨TCS的去除同步下降.但反應持續(xù)到中后期,TCS完全去除,反應液的相對抑制率逐步降低,表明反應后期產生的中間產物毒性明顯低于TCS.
圖11 TCS在UV/Cl工藝中對發(fā)光細菌的發(fā)光抑制率 Fig.11 Inhibition rate of TCS degradation by the UV/chlorine processon luminescent bacteria
使用ECOSAR軟件(美國EPA),預測TCS及其中間產物對魚類、水蚤、綠藻的急性毒性[24-25],結果見表7.TCS的LC50(魚96h)值為0.97mg/L,前期產物TCS-Cl、TCS-2Cl及Pr338的LC50(魚96h)值分別為0.29, 0.08, 0.81mg/L.與TCS相比,反應前期產物對水生生物具有較高的急性毒性.然而其余中間產物的LC50(魚96h)值均高于TCS.可認為反應持續(xù)到中后期時,產生的中間產物對水生生物急性毒性明顯降低.發(fā)光細菌急性毒性實驗也驗證了這一結論.TCS在UV/Cl工藝中產生毒性風險較高的中間產物,隨著反應的進行,產生了毒性較低的中間產物,生態(tài)環(huán)境風險得以減少.
表7 利用ECOSAR預測TCS及其中間產物的急性毒性 Table 7 Estimated acute toxicity of TCS and its intermediates by ECOSAR software
3.1 與單一UV、單一Cl相比,反應300s, TCS在UV/Cl工藝中去除率達100%,TCS在UV/Cl工藝中降解效果較好.
3.2 TCS降解速率常數隨UV光強和余氯初始濃度增加而增加,隨氨氮濃度的增大而減小.堿性條件明顯促進TCS的降解反應.
3.3 使用HRMS Q-TOF解析出17種中間產物, UV/Cl工藝降解TCS主要涉及氯代、羥基加成、脫氯氫化、脫氯羥基化、醚鍵裂解和脫氫等反應.
3.4 TCS在降解過程中產生TCS-Cl和TCS-2Cl等毒性較高的中間產物.與TCS相比,TCS-2Cl的急性毒性高于TCS一個數量級.隨著反應進行,產生了毒性較低的中間產物,反應時間1200s后,毒性抑制率降為36.8%, 生態(tài)環(huán)境風險得以減少.
[1] 劉 瑩,管運濤,水野忠雄,等.藥品和個人護理用品類污染物研究進展 [J]. 清華大學學報(自然科學版), 2009,(3):368-372.Liu Y, Guan Y T, Mizuno T, et al. Recent research advances of pharmaceuticals and personal care pollutants [J]. Tsinghua University(Sci & Tech), 2009,(3):368-372.
[2] 喬鐵軍,張錫輝,歐慧婷.藥品和個人護理用品在水環(huán)境中污染狀況的研究與展望 [J]. 給水排水, 2009,35(7):121-130.Qiao T J, Zhang X H, Ou H T. Advances and prospects on pharmaceuticals and personal care products in aquatic environment [J]. Geomatics World, 2009,35(7):121-130.
[3] Chen X J, Jessica R, Liu Y, et al. Ozonation products of triclosan in advanced wastewater treatment [J]. Water Research, 2012,46(7):2247- 2256.
[4] Song Z, Wang N, Zhu L H, et al. Efficient oxidative degradation of triclosan by using an enhanced Fenton-like process [J]. Chemical Engineering Journal, 2012,198-199(8):379-387.
[5] Brausch J M, Rand G M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity [J]. Chemosphere, 2011,82(11):1518-1532.
[6] Fang J Y, Fu Y, Shang C. The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System [J]. Environmental Science & Technology, 2014,48(3):1859-1868.
[7] 劉嘉健,吳梓昊,方晶云.UV/氯高級氧化技術對水中嗅味物質的降解動力學研究[C]//中國環(huán)境科學學會, 2015.Liu J J, Wu Z H, Fang J Y. Degradation kinetics of odorant substances in water by the UV/chlorine advanced oxidation technology [C]// Chinese Society For Environmental Sciences, 2015.
[8] 陳 成,楊紹貴,孫 成,等.阿特拉津在紫外-氯消毒中的轉化特性及機理研究 [J]. 農業(yè)環(huán)境科學學報, 2009,28(6):1302-1306.Chen C, Yang S G, Sun C, et al. Conversion Characteristics and Mechanism of Atrazine in a Combination of UV and Chlorination [J]. Journal of Agro-Environment Science, 2009,28(6):1302-1306.
[9] 張永吉,劉文君,張 琳.氯對紫外線滅活枯草芽孢桿菌的協同作用 [J]. 環(huán)境科學, 2006,27(2):329-332.Zhang Y J, Liu W J, Zhang L. Synergistic disinfection ofspores by UV irradiation and chlorine [J]. Environmental Science, 2006,27(2):329-332.
[10] Pan Y, Cheng S, Yang X, et al. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics [J]. Water Research, 2017,116:254.
[11] Kong X, Jiang J, Ma J, et al. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products [J]. Water Research, 2016,90:15-23.
[12] Sapozhnikova Y, Hedgespeth M, Wirth E, et al. Analysis of selected natural and synthetic hormones by LC-MS-MS using the US EPA method 1694 [J]. Analytical Methods, 2011,3(5):1079-1086.
[13] 李玉瑛,何文龍,李青松,等.UV協同ClO2去除三氯生及其降解產物的研究 [J]. 環(huán)境科學, 2015,(2):516-522.Li Y Y, He W L, Li Q S, et al. Removal of triclosan with the method of UV/ClO2and its degradation products [J]. Environmental Science, 2015,(2):516-522.
[14] 龐宇辰,席勁瑛,胡洪營,等.再生水紫外線-氯聯合消毒工藝特性研究 [J]. 中國環(huán)境科學, 2014,34(6):1429-1434.Pang Y C, Xi J Y, Hu H Y, et al. Evaluation of sequential use of UV irradiation and chlorination to disinfect reclaimed water [J]. China Environmental Science, 2014,34(6):1429-1434.
[15] 李青松,李學艷,姚寧波,等.UV/SPS降解水中三氯生的效能及動力學 [J]. 環(huán)境科學, 2017,38(4):1467-1476.Li Q S, Li X Y, Yao N B, et al. Degradation efficiency and kinetics of Triclosan in Aqueous Solution by UV/Sodium persulfate [J]. Environmental Science, 2017,38(4):1467-1476.
[16] 樊鑫鑫,杜爾登,李佳琦,等.萘普生在氯消毒過程中的去除、轉化與風險評價 [J]. 環(huán)境科學, 2018,4:1645-1653.Fan X X, Du E D, Li J Q, et al. Chloriation of naproxen: Removal, transformation and risk assessment [J]. Environmental Science, 2018,4:1645-1653.
[17] 付永勝,史鴻樂,劉義青,等.UV/H2O2光化學降解水中的三氯生 [J]. 中國環(huán)境科學, 2018,38(2):616-626.Fu Y S, Shi H L, Liu Y Q, et al. Photochemical degradation of Triclosan by UV/H2O2in water [J]. China Environmental Science, 2018,38(2):616-626.
[18] Kliegman S, Eustis S N, Arnold W A, et al. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation [J]. Environmental Science & Technology, 2013,47(13):6756-6763.
[19] Tian F, Liu W, Guo G, et al. Kinetics and mechanism of dimethoate chlorination during drinking water treatment [J]. Chemosphere, 2014, 103(1):181-187.
[20] Fiss E M, Rule K L, Vikesland P J. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products [J]. Environmental Science & Technology, 2007, 41(7):2387-2394.
[21] Yang B, Ying G G, Zhao J L, et al. Oxidation of triclosan by ferrate: reaction kinetics, products identification and toxicity evaluation [J]. Journal of Hazardous Materials, 2011,186(1):227-235.
[22] Song Z, Wang N, Zhu L, et al. Efficient oxidative degradation of triclosan by using an enhanced Fenton-like process [J]. Chemical Engineering Journal, 2012,198-199(8):379-387.
[23] Chen J, Qu R, Pan X, et al. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation [J]. Water Research, 2016,103: 215-223.
[24] Jones O A H, Voulvoulis N, Lester J N. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals [J]. Water Research, 2002,36(20):5013-5022.
[25] Giddings J M, Salvito D, Putt A E. Acute toxicity of 4-amino musk xylene to Daphnia magna in laboratory water and natural water [J]. Water Research, 2000,34(14):3686-3689.
Removal and degradation mechanism of triclosan by the UV/chlorine process.
ZHOU Si-qi1, LI Jia-qi1, DU Er-deng1*, LI Miao2, LIU Xiang2
(1.School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China;2.School of Environmental, Tsinghua University, Beijing 100084, China)., 2019,39(3):1000~1008
Degradation of triclosan(TCS), a kind ofbroad-spectrum antimicrobial agent, was studied in water by the UV/chlorine advanced oxidation process. The removal of TCS by single UV, single chlorination and the UV/chlorine process was compared. The effect of different factors on the UV/chlorine process was investigated, including UV intensity, initial residual chlorine, pH value and ammonia concentration. The degradation mechanism and the ecological risk were further discussed. The results indicated that TCS had higher removal by the UV/chlorine process compared with single UV and single chlorination. The reaction fitted pseudo-first-order kinetics. The degradation rate increased with the increase of UV intensity and initial residual chlorine, while decreased with the increase of ammonia concentration. Seventeen intermediates were identified byHRMS Q-TOF, and the possible degradation pathway was also proposed. Both luminescent bacteria experiment and ECOSAR prediction showed that intermediates with high toxicity were produced on TCS degradation by the UV/chlorine process. With the process of reaction, intermediates generated with lower toxicity, and the ecological environment risk was reduced.
triclosan (TCS);UV/chlorine;advanced oxidation process;influencing factors;degradation mechanism;toxicity evaluation
X522
A
1000-6923(2019)03-1000-09
周思琪(1996-),女,江蘇徐州人,常州大學碩士研究生,主要從事飲用水水質安全保障技術.發(fā)表論文1篇.
2018-08-06
江蘇省研究生實踐創(chuàng)新計劃項目(SJCX18-0960);國家水體污染控制與治理科技重大專項(2017ZX07202-002)
* 責任作者, 副教授, duerdeng@cczu.edu.cn