黃思茂 周越菡
【摘 要】細(xì)胞自噬是真核生物內(nèi)對蛋白質(zhì)或受損細(xì)胞器等細(xì)胞組分進(jìn)行周轉(zhuǎn)的過程,其對維持細(xì)胞穩(wěn)態(tài)具有重要作用。自發(fā)現(xiàn)以來,研究者對這一重要的細(xì)胞過程及其基礎(chǔ)機(jī)制展開了大量研究并取得了重大進(jìn)展。其中,細(xì)胞自噬與癌癥的發(fā)生發(fā)展有著密切聯(lián)系。本文主要就自噬對癌癥發(fā)生的影響展開概述,為全面理解自噬及其與癌癥關(guān)系提供新思路。
【關(guān)鍵詞】細(xì)胞自噬;癌癥
中圖分類號: TS201.4 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號: 2095-2457(2018)35-0182-003
DOI:10.19694/j.cnki.issn2095-2457.2018.35.079
Advances In Research On The Relationship Between Autophagy And Cancer
HUANG Si-mao ZHOU Yue-han
(College of Pharmacy,Guilin Medical University,Guilin Guangxi 541004,China)
【Abstract】Autophagy is a process of turnover of cellular components such as proteins or damaged organelles in eukaryotes, which plays an important role in maintaining cell homeostasis. Since its discovery, researchers have conducted extensive research and significant progress on this important cellular process and its underlying mechanisms. Among them, autophagy is closely related to the occurrence and development of cancer. This article focuses on the impact of autophagy on cancer, providing new insights into a comprehensive understanding of autophagy and its relationship to cancer.
【Key words】Autophagy; Cancer
1 細(xì)胞自噬
1.1 細(xì)胞自噬概念
自噬自發(fā)現(xiàn)以來一直被視為一種細(xì)胞保護(hù)機(jī)制,能夠在細(xì)胞營養(yǎng)缺乏的條件下,維持細(xì)胞穩(wěn)態(tài),保持細(xì)胞存活,并在蛋白質(zhì)和細(xì)胞器的自我消化和病原體的降解中起作用[1]。研究表明,自噬失調(diào)與包括癌癥,心血管疾病和自身免疫性疾病等多種疾病密切相關(guān)[2-4]。根據(jù)包裹內(nèi)容物和運(yùn)輸方式的不同,自噬可分為巨自噬,微自噬和分子伴侶介導(dǎo)的自噬。巨自噬的過程涉及兩個(gè)階段,一是將待降解的胞質(zhì)成分包裹入被稱為自噬體的雙層膜囊泡中,二是將其運(yùn)輸?shù)饺苊阁w中,并與溶酶體融合,從而釋放待降解組分供溶酶體降解[1]。微自噬則是溶酶體直接通過溶酶體壁的內(nèi)陷而吞噬降解細(xì)胞質(zhì)組分[5]。分子伴侶介導(dǎo)的自噬不同于前兩者,其具有選擇性,而前兩者不具備選擇性,通過伴侶蛋白將待降解組分直接穿過溶酶體壁而進(jìn)行降解[6]。鑒于巨自噬是自噬作用的主要部分,本文將集中討論巨自噬(本文稱為自噬)及其與癌癥的關(guān)系。
1.2 自噬發(fā)生過程
自噬能夠被許多因素介導(dǎo),其中營養(yǎng)缺乏是公認(rèn)的自噬誘導(dǎo)因素,當(dāng)細(xì)胞處于營養(yǎng)缺乏條件下,細(xì)胞能夠利用自噬所提供的重要的蛋白質(zhì)和氨基酸而存活下來[7]。缺氧,感染和DNA損傷也被認(rèn)為是自噬的激活劑,然而,這些因素是促進(jìn)細(xì)胞存活還是誘導(dǎo)細(xì)胞死亡存在爭議[8]。
自噬發(fā)生由30多種自噬相關(guān)基因(ATG)所編碼的蛋白質(zhì)調(diào)控[9]。其包括自噬體的形成、自噬底物向溶酶體的運(yùn)送和溶酶體內(nèi)降解三個(gè)部分[10],細(xì)分為啟動(dòng)自噬、囊泡成核、囊泡伸展、囊泡回縮、自噬體與溶酶體融合及包裹物降解幾部分。自噬體膜的形成是自噬的第一步,而形成自噬體膜的蛋白質(zhì)和脂質(zhì)在Beclin1-PI3K III復(fù)合物的作用下不斷被召集[11],故Beclin1被認(rèn)為是自噬啟動(dòng)的關(guān)鍵標(biāo)記物。形成的小的膜性結(jié)構(gòu)稱為前自噬體,由內(nèi)質(zhì)網(wǎng)一個(gè)特殊的區(qū)域形成[12],且高爾基體,線粒體和其他細(xì)胞結(jié)構(gòu)可能亦有助于前自噬體的形成[13]。最近有研究表明,一種延伸突觸結(jié)合蛋白也可作為前自噬體形成的調(diào)節(jié)劑[12]。前自噬體形成后,在泛素激活酶E1、泛素結(jié)合酶E2以及泛素連接酶E3類似物共同參與下,前自噬體雙層膜開始伸展,最終將受損蛋白及細(xì)胞器包裹其中,形成自噬體[14]。
自噬體在哺乳動(dòng)物細(xì)胞中的形成確切機(jī)制尚不明確,但LC3蛋白家族已被證明對自噬體的形成具有重要作用,當(dāng)誘導(dǎo)自噬時(shí),微管相關(guān)蛋白輕鏈3(LC3B)被切割形成LC3B-1,然后進(jìn)一步加工形成LC3B-II [1]。LC3B-II定位于自噬體膜的內(nèi)部和外部,參與最終的膜融合步驟以及自噬體的定位[15]。自噬體形成后就會(huì)轉(zhuǎn)移至溶酶體,并與其發(fā)生融合;自噬體可以在胞質(zhì)任何地方形成,然而,溶酶體幾乎全部存在于核周區(qū)。自噬體沿著細(xì)胞骨架中的微管軌跡向核周區(qū)域的溶酶體移動(dòng),此過程受包括RAB GTP酶,膜融合蛋白(SNARE)和包被蛋白(COPs)等的多種蛋白控制[16-19]。其中RAB7參與了自噬體的成熟,追蹤和融合的全過程[20]。最后自噬體與溶酶體融合,并將待降解細(xì)胞組分釋放至溶酶體內(nèi)進(jìn)行降解,但此步驟的研究并不多,所掌握的知識(shí)知之甚少。
1.3 自噬相關(guān)信號通路
1.3.1 mTOR信號通路
mTOR是一種絲氨酸/蘇氨酸蛋白激酶即為雷帕霉素的靶標(biāo)蛋白,其活化后可抑制自噬的發(fā)生。mTOR有兩種復(fù)合物表示形式,mTORC1(mTOR complex 1)和mTORC2,mTORC1復(fù)合物由mTOR與Raptor、mLST8和PRAS40組成;mTORC2復(fù)合物由mTOR與Rictor、mSIN1及Protor-1組成[21]。mTOR是多條調(diào)節(jié)自噬信號通路的交集點(diǎn), PI3K/AKT信號通路能激活mTOR[22],而LKB1/AMPK、Ras/Raf1/MAPK[23]和TSC2/PTEN/CREB1信號通路則抑制mTOR。當(dāng)細(xì)胞營養(yǎng)和生長因子豐富時(shí),mTORC1被激活并磷酸化關(guān)鍵的ATG蛋白,從而抑制自噬。 相反,當(dāng)營養(yǎng)缺乏時(shí)mTORC1被抑制時(shí),自噬被誘導(dǎo)[24]。
1.3.2 FoxO信號通路
FoxO家族是一類比較保守的轉(zhuǎn)錄因子,人類的FoxO家族包括FoxO1(FKHR)、FoxO2 (FoxO6)、FoxO3 (FKHRLl) 和FoxO4 (AFX)。當(dāng)細(xì)胞處于應(yīng)激和饑餓條件時(shí),這些轉(zhuǎn)錄因子會(huì)促進(jìn)自噬以緩解這種不利條件。有研究表明[25], FoxO3可增強(qiáng)谷氨酰胺合成酶的活性,而谷氨酰胺合成酶可抑制mTORC1在溶酶體上的定位,故FoxO可能抑制mTOR信號通路,從而誘導(dǎo)自噬。除了誘導(dǎo)自噬外,F(xiàn)oxO還與其他相關(guān)自噬通路相互作用,從而調(diào)節(jié)自噬的發(fā)生[26]。
1.3.3 RAS信號通路
RAS家族蛋白由參與控制細(xì)胞生長和存活的小GTP酶組成,研究顯示,RAS主要通過兩條信號通路來調(diào)節(jié)細(xì)胞自噬。首先,RAS被激活后會(huì)導(dǎo)致PI3K/AKT信號通路活化,并且上調(diào)mTORC1水平,這都會(huì)抑制自噬發(fā)生[27]。另外,RAS活化還可以通過信號傳導(dǎo)下調(diào)RAF/MEK/ERK途徑導(dǎo)致自噬增加[28]。
1.3.4 p53信號通路
p53基因是人類腫瘤中常見的突變部位,其所編碼的蛋白具有四大主要功能區(qū):一、N末端轉(zhuǎn)錄激活區(qū),此區(qū)能夠與p53負(fù)性調(diào)控因子結(jié)合;二、中央DNA核心區(qū);三、四聚化結(jié)構(gòu)域;四、C末端非特異性DNA結(jié)合區(qū)[29]。p53對自噬具有雙重調(diào)節(jié)作用,正常情況下,p53水平受Beclin1靶位點(diǎn)USP10和USP13的調(diào)控,使其去泛素化,從而激活或抑制細(xì)胞自噬。研究表明[30],USP10、USP13、Beclin1和Vps34等的活性與p53的表達(dá)量密切相關(guān),下調(diào)其活性能夠抑制p53的表達(dá)量。當(dāng)細(xì)胞處于代謝應(yīng)激條件下,p53能夠磷酸化AMPK (Thr127),進(jìn)而抑制mTOR活性,從而激活自噬。
2 自噬與癌癥的關(guān)系
自噬與癌細(xì)胞發(fā)育和增殖之間的相互作用是復(fù)雜的。有研究表明自噬可作為腫瘤抑制劑或是腫瘤促進(jìn)劑。根據(jù)腫瘤的類型和產(chǎn)生背景的不同,自噬在癌癥生物學(xué)中也扮演著不同的角色。
2.1 自噬作為腫瘤抑制劑
當(dāng)自噬減少或異常時(shí),損壞的結(jié)構(gòu)或有害物質(zhì)不能從細(xì)胞中清除,導(dǎo)致氧化應(yīng)激環(huán)境,這有助于癌癥的發(fā)展。在這種情況下,正常的自噬可視為腫瘤抑制劑。研究顯示,自噬相關(guān)基因Becin1在乳腺癌,前列腺癌和卵巢癌等多種癌癥中發(fā)生缺失[31-32],表明自噬在這些癌癥中扮演著腫瘤抑制劑的角色。另外,為進(jìn)一步評估Becin1缺失對這些癌癥發(fā)生發(fā)展的影響,有研究者進(jìn)行了小鼠體內(nèi)實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果顯示,Becin1缺失導(dǎo)致癌細(xì)胞增殖加快,提示在這些癌癥中Becin1充當(dāng)腫瘤抑制劑的角色,并說明自噬在這些癌癥中發(fā)揮著抗癌的作用[33]。BIF-1是一種與Becin1相關(guān)的促進(jìn)自噬體形成的蛋白質(zhì),研究發(fā)現(xiàn),其在肺癌和胃癌中異常表達(dá)或缺失[34-35],且在BIF-1基因敲除小鼠中,自噬體形成過程受到顯著的破壞,并且在自噬受抑制情況下,腫瘤快速發(fā)展[36]。Takamura等人在自噬相關(guān)基因5(Atg5)及Atg7缺失小鼠模型中發(fā)現(xiàn),敲除自噬會(huì)誘導(dǎo)肝癌的發(fā)生發(fā)展[37]。這些研究均表明,在某些癌癥中,自噬具有抑制癌癥發(fā)生發(fā)展的作用。
2.2 自噬作為腫瘤促進(jìn)劑
雖然有研究表明自噬可以抑制腫瘤生長,但也有研究顯示,在某些腫瘤中,腫瘤細(xì)胞比正常細(xì)胞更依賴于自噬,并利用它來促進(jìn)細(xì)胞生長和增殖。前文提及RAS激活后,能夠通過信號傳導(dǎo)下調(diào)RAF/MEK/ERK途徑,從而誘導(dǎo)自噬上調(diào),而在多種腫瘤如胰腺腫瘤中RAS處于活化狀態(tài),自噬水平顯著高表達(dá),而當(dāng)自噬被抑制時(shí),在細(xì)胞和小鼠模型中均出現(xiàn)腫瘤消退現(xiàn)象[38]。文獻(xiàn)報(bào)道,氧化應(yīng)激能夠上調(diào)基質(zhì)成纖維細(xì)胞自噬,從而導(dǎo)致線粒體被破壞[39],當(dāng)這種情況發(fā)生時(shí),基質(zhì)細(xì)胞利用有氧糖酵解產(chǎn)生乳酸和酮等物質(zhì),進(jìn)而促進(jìn)鄰近腫瘤細(xì)胞的增殖[40]。
3 小結(jié)與展望
自噬是一個(gè)復(fù)雜的細(xì)胞過程,在癌癥細(xì)胞存活和死亡中發(fā)揮雙重作用,其對于腫瘤的作用也是爭議頗多。原因在于對自噬的研究尚未完全透徹,許多相關(guān)通路的研究也不是很明確,若能了解細(xì)胞自噬各個(gè)階段中的分子機(jī)制,那就可將自噬引入腫瘤的治療中,為腫瘤的治療提出新的可能性。
【參考文獻(xiàn)】
[1]Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms [J].J Pathol. 2010, 221: 3–12.
[2]White E. The role for autophagy in cancer [J]. J Clin Invest. 2015, 125: 42–46.
[3]Lavandero S, Chiong M, Rothermel, BA, et al. Autophagy in cardiovascular biology [J]. J Clin Invest. 2015, 125: 55–64.
[4]Yang Z, Goronzy JJ, Weyand CM. Autophagy in autoimmune disease [J]. J Mol Med. 2015 , 93: 707–717.
[5]Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating [J]. Cell Mol Life Sci. 2012, 69: 1125–1136.
[6]Bejarano E, Cuervo AM. Chaperone-mediated autophagy [J]. Proc Am Thorac Soc. 2010, 7: 29–39.
[7]Onodera J, Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation [J]. J Biol Chem. 2005, 280: 31582–31586.
[8]Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia [J]. J Biol Chem. 2008, 283: 10892-10903.
[9]Feng Y, He D, Yao Z, et al. The machinery of macroautophagy [J]. Cell Res. 2014, 24: 24–41.
[10]Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism [J]. Semin Cell Dev Biol. 2010, 21(7): 683-90.
[11]He C, Levine B. The Beclin 1 interactome [J]. Curr Opin Cell Biol. 2010, 22: 140–149.
[12]Nascimbeni AC, Codogno P, Morel E. Autophagosomal membranes assemble at ER-plasma membrane contact sites [J]. Mol Cell Oncol. 2017, 4: e1356431.
[13]Bernard A, Klionsky DJ. Autophagosome formation: tracing the source [J]. Dev Cell. 2013, 25: 116–117.
[14]Otomo C, Metlagel Z, Takaesu G, et al. Structure of the human ATG12 similar to ATG5 conjugate required for LC3 lipidation in autophagy [J]. Nat Struct Mol Biol. 2013, 20(1): 59-66.
[15]Hansen TE, Johansen T. Following autophagy step by step [J].BMC Biol. 2011, 9: 39.
[16]Nakamura S, Yoshimori T. New insights into autophagosome-lysosome fusion [J]. J Cell Sci. 2017, 130: 1209–1216.
[17]Kimura S, Noda T, Yoshimori T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes [J]. Cell Struct Funct. 2008, 33: 109–122.
[18]Cardoso CMP, Groth-Pedersen L, H?yer-Hansen M, et al. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells [J]. PLoS ONE. 2009, 4: e4424.
[19]Molino D, Zemirli N, Codogno P, et al. The journey of the autophagosome through mammalian cell organelles and membranes [J]. J Mol Biol. 2017, 429: 497–514.
[20]Guerra F, Bucci C. Multiple roles of the small GTPase Rab7 [J]. Cells. 2016, 5: 34.
[21]Sini P, James D, Chresta C, et al. Simultaneous inhibition of mTORC1 and mTORC2 by mTOR kinase inhibitor AZD8055 induces autophagy and cell death in cancer cells [J]. Autophagy, 2010, 6(4): 553-4.
[22]Vander Haar E, Lee SI, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 [J]. Nat Cell Biol, 2007, 9(3): 316-23.
[23]Zhu B, Zhou Y, Xu F, et al. Porcine circovirus type 2 induces autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in PK-15 cells [J]. J Virol, 2012, 86(22): 12003-12012.
[24]Martina JA, Chen Y, Gucek M, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB [J]. Autophagy. 2012, 8: 903–914.
[25]Van der Vos KE, Eliasson P, Proikas-Cezanne T, et al. Modulation of glutamine metabolism by the PI(3)K-PKBFOXO network regulates autophagy [J]. Nat Cell Biol. 2012, 14(8): 829-37.
[26]Webb AE, Brunet A. FOXO transcription factors: Key regulators of cellular quality control [J]. Trends Biochem Sci. 2014, 39(4): 159-69.
[27]Schmukler E, Kloog Y, Pinkas-Kramarski R. Ras and autophagy in cancer development and therapy [J]. Oncotarget 2014,5: 577–586.
[28]Pattingre S, Bauvy C, Codogno P. Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells [J]. J Biol Chem. 2003, 278: 16667–16674.
[29]Dai C, Gu W. p53 post-translational modification:deregulated in tumorigenesis [J]. Trends Mol Med. 2010,16(11): 528-36.
[30]Liu J, Xia H, Kim M, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 [J]. Cell. 2011, 147(1): 223-34.
[31]Aita VM, Liang XH, Murty VVVS, et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21 [J]. Genomics. 1999, 59: 59–65.
[32]Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene [J]. J Clin Invest. 2003, 112: 1809–1820.
[33]Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor [J]. Proc Natl Acad Sci U.S.A. 2003, 100: 15077–15082.
[34]Bonner AE, Lemon WJ, Devereux TR, et al. Molecular profiling of mouse lung tumors: association with tumor progression, lung development, and human lung adenocarcinomas [J]. Oncogene. 2004, 23: 1166–1176.
[35]Lee JW, Jeong EG, Soung YH, et al. Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas [J]. Pathology. 2006, 38: 312–315.
[36]Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis [J]. Nat Cell Biol. 2007, 9: 1142–1151.
[37]Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors [J]. Genes Dev. 2011, 25: 795–800.
[38]Yang A, Rajeshkumar NV, Wang X, et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations [J]. Cancer Discov. 2014, 4: 905–913.
[39]Martinez-Outschoorn UE, Pavlides S, Howell A, et al. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem [J]. Cell Biol. 2011, 43: 1045–1051.
[40]Wilde L, Roche M, Domingo-Vidal M, et al. Metabolic coupling and the reverse Warburg effect in cancer, implications for novel biomarker and anticancer agent development. Semin Oncol [J]. 2017, 44: 198–203.