文 科,林哲絢,韓 溟
創(chuàng)傷是引起人類死亡的第二大原因[1],其中約有40%的創(chuàng)傷患者死于傷后難治性出血[1],而引起難治性出血的原因是內(nèi)源性凝血功能障礙即急性創(chuàng)傷性凝血病(acute coagulopathy of trauma,ACoT)。ACoT是指嚴(yán)重創(chuàng)傷打擊后機(jī)體出現(xiàn)急性凝血功能紊亂,表現(xiàn)為凝血功能異常引起的難控性、病理性出血,出血從創(chuàng)傷局部迅速進(jìn)展為彌漫性出血,患者最終死于大量失血。其發(fā)生與失血性組織低灌注和嚴(yán)重組織損傷有關(guān),并與患者愈后密切相關(guān)。雖然限制性液體復(fù)蘇和損害控制理論已經(jīng)廣泛應(yīng)用,但難治性出血仍是創(chuàng)傷患者死亡的主要原因。目前,歐洲嚴(yán)重創(chuàng)傷出血及凝血病處理指南自2007年發(fā)布后,已連續(xù)多次更新,且我國(guó)創(chuàng)傷急救領(lǐng)域?qū)<揖蛣?chuàng)傷性凝血病的診斷及應(yīng)急處理已達(dá)成共識(shí),提高了創(chuàng)傷外科醫(yī)師對(duì)ACoT的認(rèn)識(shí)和救治水平[2-3]。然而創(chuàng)傷性凝血病的發(fā)病機(jī)制仍不清楚。嚴(yán)重創(chuàng)傷后可能發(fā)生血小板功能異常、內(nèi)皮細(xì)胞激活、內(nèi)源性抗凝、纖維蛋白原重塑和纖溶亢進(jìn)。本文就ACoT最新的研究進(jìn)展做一綜述。
目前認(rèn)為,創(chuàng)傷性凝血病是涉及多個(gè)系統(tǒng)的病理生理過(guò)程。在凝血病動(dòng)物模型及創(chuàng)傷患者中,失血性組織低灌注和嚴(yán)重組織損傷被認(rèn)為是發(fā)病的關(guān)鍵因素[4-5]。創(chuàng)傷性凝血病早在20世紀(jì)50年代朝鮮戰(zhàn)爭(zhēng)時(shí)已被報(bào)道[6],研究發(fā)現(xiàn)嚴(yán)重創(chuàng)傷患者凝血酶原時(shí)間(prothrombin,PT)和活化的部分凝血酶原時(shí)間(activated partial thromboplastin times,APTT)延長(zhǎng),且凝血障礙程度與輸血量呈正相關(guān)。這一現(xiàn)象被解釋為創(chuàng)傷后凝血因子和血小板消耗,而液體復(fù)蘇和輸血的稀釋作用導(dǎo)致凝血障礙進(jìn)一步惡化。創(chuàng)傷性凝血病被Brohi等[7]定義為嚴(yán)重創(chuàng)傷患者送達(dá)急診室時(shí)PT、APTT較正常升高1.5倍。
隨著基礎(chǔ)研究的進(jìn)展,創(chuàng)傷性凝血病機(jī)制的核心已由最初的大量出血及液體復(fù)蘇引起的血漿稀釋模型轉(zhuǎn)變?yōu)樯婕皟?nèi)皮損傷、蛋白質(zhì)C系統(tǒng)、血小板微泡及纖溶系統(tǒng)的細(xì)胞分子模型。內(nèi)皮細(xì)胞損傷、血小板功能紊亂及內(nèi)源性小分子(如蛋白質(zhì)C、多配體聚糖-1、纖溶酶原激活物抑制物-1、纖維蛋白溶解抑制物等)共同參與了凝血病的發(fā)生與發(fā)展[8-11]。目前認(rèn)為,6個(gè)關(guān)鍵發(fā)病環(huán)節(jié)在創(chuàng)傷性凝血病發(fā)生發(fā)展過(guò)程中起重要作用:組織及內(nèi)皮損傷、休克、血小板功能紊亂、纖溶亢進(jìn)、低體溫、酸中毒(圖1)。
圖1 創(chuàng)傷性凝血病的病理生理過(guò)程
創(chuàng)傷導(dǎo)致的失血性休克及組織損傷可共同激活神經(jīng)-體液軸,同時(shí)誘發(fā)蛋白質(zhì)C系統(tǒng)激活,致內(nèi)源性抗凝,纖溶亢進(jìn),血小板功能紊亂和纖維蛋白損耗。休克后液體復(fù)蘇可能引起血液稀釋、低體溫及酸中毒。這些病理生理過(guò)程共同誘發(fā)創(chuàng)傷性凝血病。
1.1內(nèi)皮損傷 血管內(nèi)皮不僅是血流屏障,更是一個(gè)具有代謝、分泌及免疫功能的散布的動(dòng)力學(xué)器官,完整的血管內(nèi)皮抑制血小板沉積,分泌多種血管活性物質(zhì),參與血管舒縮、血液凝固及纖溶、炎癥反應(yīng)[12-14]。機(jī)體遭受嚴(yán)重創(chuàng)傷時(shí),產(chǎn)生應(yīng)激性“格斗或逃跑反應(yīng)”,神經(jīng)-體液軸被激活導(dǎo)致兒茶酚胺大量釋放[15],同時(shí)炎癥系統(tǒng)也被激活。這兩種通路均可激活內(nèi)皮細(xì)胞[16],導(dǎo)致多糖蛋白質(zhì)復(fù)合物降解[11],使抗凝及促纖溶的蛋白質(zhì)表達(dá)增加。血管內(nèi)皮細(xì)胞膜上的多糖蛋白質(zhì)復(fù)合物在微脈管完整性及與血流相互作用中起著重要作用[17]。多糖蛋白質(zhì)復(fù)合物脫落可誘導(dǎo)凝血酶產(chǎn)生,蛋白質(zhì)C活化和纖溶亢進(jìn),具有內(nèi)源性肝素化的潛在抗凝效應(yīng)[18- 19]。多配體聚糖-1(Syn-1)是內(nèi)皮細(xì)胞多糖蛋白復(fù)合物降解脫落的可溶性產(chǎn)物,被認(rèn)為是內(nèi)皮細(xì)胞糖衣完整性的標(biāo)記物[20]。最近研究發(fā)現(xiàn),創(chuàng)傷患者入院時(shí)血漿Syn-1維持在較高水平,并且與交感腎上腺系統(tǒng)亢進(jìn)、炎癥反應(yīng)、低蛋白質(zhì)C水平、纖溶亢進(jìn)和APTT延長(zhǎng)有關(guān)[11],說(shuō)明創(chuàng)傷患者存在血管內(nèi)皮損傷,而損傷釋放的Syn-1可能與炎癥、凝血功能改變有關(guān)?;谀壳把芯?,有學(xué)者提出創(chuàng)傷后"血管內(nèi)皮細(xì)胞病"假說(shuō),但需進(jìn)一步研究體內(nèi)微血管系統(tǒng)的變化。盡管如此,在失血性休克及創(chuàng)傷性凝血病動(dòng)物模型中,已發(fā)現(xiàn)兒茶酚胺剩余與內(nèi)皮多糖蛋白質(zhì)復(fù)合物脫落降解有關(guān),且Syn-1與凝血病發(fā)生有關(guān)[21-22]。因此,保護(hù)內(nèi)皮細(xì)胞完整性已被認(rèn)為可能是未來(lái)治療ACoT的潛在靶點(diǎn)[23]。
1.2蛋白質(zhì)C系統(tǒng) 蛋白質(zhì)C(PC)是一種維生素K依賴的糖蛋白,當(dāng)凝血酶與其受體結(jié)合,PC可被激活,PC可進(jìn)一步與跨膜糖蛋白結(jié)合形成凝血酶-血栓調(diào)節(jié)蛋白復(fù)合物(Thrombin-thrombomodulin,T-TM)[24],該復(fù)合物可正反饋促進(jìn)PC活化[9]。現(xiàn)多認(rèn)為,凝血酶-血栓調(diào)節(jié)蛋白-蛋白質(zhì)C抗凝系統(tǒng)是最基本的抗凝機(jī)制[25]。Brohi等[25]發(fā)現(xiàn)創(chuàng)傷患者血中血栓調(diào)節(jié)蛋白升高與血漿蛋白質(zhì)C水平降低有關(guān),認(rèn)為蛋白質(zhì)C降低的原因是凝血酶結(jié)合血栓調(diào)節(jié)蛋白后使蛋白質(zhì)C成為活化態(tài)。后續(xù)研究證實(shí)活化蛋白質(zhì)C(activated protein C,aPC)濃度在嚴(yán)重創(chuàng)傷患者中確有升高[26]。aPC可致APTT/PT延長(zhǎng),降低血凝塊硬度。Floccard等[27]發(fā)現(xiàn),多糖蛋白質(zhì)復(fù)合物的降解及組織低灌注也可引起PC的早期消耗、血栓調(diào)節(jié)蛋白的升高及V因子減少。內(nèi)皮缺血缺氧損傷的同時(shí),多糖蛋白質(zhì)復(fù)合物降解及PC途徑被激活[24- 25,28-29]。aPC可通過(guò)以下機(jī)制導(dǎo)致ACoT的發(fā)生:(1)aPC通過(guò)其蛋白酶活性水解結(jié)合再激活態(tài)凝血因子Ⅴ及Ⅷ上的短肽,從而使Ⅴa及Ⅷa失活,抑制外源性凝血途徑[26];(2)aPC可抑制纖溶酶原激活物抑制物-1(plasminogen activatorinhibitor-1,PAI-1),對(duì)纖溶系統(tǒng)去抑制,促進(jìn)纖維蛋白溶解[25,30]。
總之,低蛋白質(zhì)C和高血栓調(diào)節(jié)蛋白復(fù)合物水平與重癥創(chuàng)傷患者愈后密切相關(guān)。重度創(chuàng)傷更易發(fā)生組織低灌注,同時(shí)低PC與PT、APTT延長(zhǎng)及纖溶亢進(jìn)有關(guān)。因此,蛋白質(zhì)C假說(shuō),似乎是ACoT的一種潛在的機(jī)制,也符合目前的新觀點(diǎn),認(rèn)為APTT和INR升高與液體復(fù)蘇所致血液稀釋關(guān)系不大,即使未接受液體復(fù)蘇的創(chuàng)傷患者仍可發(fā)生創(chuàng)傷性凝血病[27]。
1.3纖維蛋白原和纖溶亢進(jìn) 纖維蛋白原作為凝血酶的底物,由兩組(α、β、γ)多肽鏈通過(guò)二硫鍵連接組成。凝血酶可分別切斷纖維蛋白原α鏈與β鏈氨基末端的血纖維蛋白肽A和B(fibrinopeptide A, B),生成纖維蛋白單體[31]。在活化的凝血因子X(jué)III輔助下,纖維蛋白單體間以共價(jià)鍵相連,形成穩(wěn)定牢固的不溶性纖維蛋白,完成凝血過(guò)程[32]。研究表明纖維蛋白原水平降低與ACoT患者及動(dòng)物模型高死亡率和愈后有密切關(guān)系[33-34]。創(chuàng)傷嚴(yán)重度評(píng)分(ISS)>15的嚴(yán)重創(chuàng)傷患者中纖溶亢進(jìn)的發(fā)生率>80%[35],而ACoT患者補(bǔ)充纖維蛋白原可改善愈后[34]。創(chuàng)傷患者死亡的一個(gè)重要原因是纖溶亢進(jìn)[36- 37]。凝血酶可激活凝血酶活化的纖維蛋白溶解抑制物(thrombin-activated fibrinolysis inhibitor,TAFI)和PAI-1,從而會(huì)抑制纖溶酶激活。當(dāng)出現(xiàn)內(nèi)皮細(xì)胞損傷時(shí),凝血酶可結(jié)合跨膜糖蛋白血栓調(diào)節(jié)蛋白,后者可激活蛋白質(zhì)C,aPC將會(huì)消耗PAI-1,產(chǎn)生對(duì)纖溶活性的脫抑制(de-repression)效應(yīng)[38]。有研究表明,纖溶亢進(jìn)在嚴(yán)重創(chuàng)傷患者中發(fā)病率約8.25%,并且這些患者都表現(xiàn)出惡性纖溶亢進(jìn)、100%病死率及無(wú)法測(cè)得纖維蛋白原濃度。在嚴(yán)重創(chuàng)傷患者中,纖溶亢進(jìn)多發(fā)生在傷后1h,可能發(fā)生凝血病及失血性休克相關(guān)性死亡[36]。近年來(lái),TAFI的意義被逐漸重視,當(dāng)纖維蛋白的賴氨酸殘基羰基末端被凝血酶移除,同時(shí)抑制纖維蛋白溶解,凝血酶激活的纖溶抑制物將會(huì)被激活[39]。Lustenberger 等[39]最近發(fā)現(xiàn)ACoT患者入院時(shí)血中TAFI活性明顯低于非ACoT患者,且這種情況持續(xù)約8d。此外,患者入院時(shí)TAFI活性與24h輸血量呈負(fù)相關(guān),說(shuō)明創(chuàng)傷后急性期TAFI含量及活性與傷后凝血功能異常密切相關(guān)。
1.4血小板功能紊亂 血小板是止血系統(tǒng)細(xì)胞模型的核心[40]。Kutcher等[41]發(fā)現(xiàn),在101名創(chuàng)傷患者中,即使有內(nèi)源性血小板激動(dòng)劑(如ADP)的刺激,其中約有45.5%的患者也會(huì)出現(xiàn)血小板聚集障礙。而血小板功能障礙在系統(tǒng)性纖溶亢進(jìn)病理生理過(guò)程中起著重要作用[42],比如嚴(yán)重外傷患者出現(xiàn)ADP通路受損時(shí),機(jī)體對(duì)tPA的敏感性會(huì)上調(diào)[43]。近年研究發(fā)現(xiàn),在血小板靜息及激活態(tài)均可形成釋放大量的血小板微泡(platelet-derived microparticles,PMPs),并且血小板微泡可能在機(jī)體止血及血栓形成過(guò)程中發(fā)揮著重要的作用。Ponomareva等[10]通過(guò)透射電鏡觀察到,PMPs可能通過(guò)血小板質(zhì)膜內(nèi)陷出芽及開(kāi)放的微管系統(tǒng)釋放到細(xì)胞外。PMPs表面存在大量促凝的磷脂酰絲氨酸(phosphatidylserine,PS),后者可結(jié)合凝血因子形成高度活化的凝血復(fù)合物,PS(+)PMPs刺激凝血酶生成的效力比活化的血小板強(qiáng)50到100倍[44- 45]。臨床研究發(fā)現(xiàn),PMPs在機(jī)體含量豐富且有較強(qiáng)的促凝活性,創(chuàng)傷患者入院時(shí)其含量降低可致血凝塊強(qiáng)度降低,并且其含量與創(chuàng)傷患者入院后輸血量及病死率有關(guān)[46]。因此,PMPs水平降低可能是血小板功能紊亂的一個(gè)獨(dú)立危險(xiǎn)因素。有報(bào)道,PMPs可能參與促炎反應(yīng),誘發(fā)多器官功能衰竭和急性呼吸窘迫綜合征[47-48]。由此可見(jiàn),PMPs可能是凝血和炎癥的中間調(diào)節(jié)點(diǎn),低PMPs水平與創(chuàng)傷患者入院時(shí)血凝塊形成受損有關(guān),參與了早期ACoT的發(fā)生發(fā)展[46]。然而,目前基于PMPs在ACoT中作用的研究較少,有學(xué)者推測(cè),輸入富PS(+)PMPs血漿可能在創(chuàng)傷救治中發(fā)揮積極作用[46]。
1.5惡性循環(huán):低體溫、酸中毒、血液稀釋 低體溫、凝血障礙及酸中毒是經(jīng)典的“死亡三角”。研究表明,中度創(chuàng)傷患者凝血異常發(fā)生率僅為1%,而重度創(chuàng)傷(ISS >25分)患者合并組織低灌注時(shí),凝血異常的發(fā)病率可升至39%。當(dāng)患者ISS>25分且合并酸中毒(pH<7.1)、低灌注(收縮壓<70mmHg)、低體溫(T<34℃)時(shí),發(fā)病率甚至可達(dá)到58%~98%[49]。低體溫及酸中毒均可降低血漿凝血因子的反應(yīng)速率,體溫下降1℃反應(yīng)速率將下降5%左右,從而導(dǎo)致凝血異常。低體溫還可抑制凝血酶產(chǎn)生及纖維蛋白原合成,但不會(huì)影響纖維蛋白原的降解。而酸中毒對(duì)凝血因子復(fù)合物影響顯著,當(dāng)pH為6.8時(shí)凝血因子復(fù)合物的活力可低至20%[50]。此外,酸中毒可干擾活化的血小板表面帶負(fù)電荷的磷脂對(duì)凝血因子活化的促進(jìn)作用,并影響凝血因子間的相互作用[51]。
近幾年,血液稀釋也被加入危險(xiǎn)因素之中,成為"死亡四部曲",它是指在失血性休克治療過(guò)程中,無(wú)指征的過(guò)度進(jìn)行液體復(fù)蘇,導(dǎo)致凝血因子被進(jìn)一步稀釋。血液稀釋的原因主要有兩方面,即生理性和醫(yī)源性。組織間隙液進(jìn)入血管導(dǎo)致凝血因子稀釋。同時(shí)盲目的臨床補(bǔ)液可使血液稀釋進(jìn)一步惡化。在體內(nèi)外研究中證實(shí),這種稀釋性凝血異常與補(bǔ)液量呈正相關(guān)[52]。
目前的研究認(rèn)為,創(chuàng)傷狀態(tài)下凝血系統(tǒng)、炎癥系統(tǒng)及細(xì)胞系統(tǒng)(血小板及內(nèi)皮細(xì)胞)功能紊亂,相互作用,誘發(fā)創(chuàng)傷性凝血病。創(chuàng)傷引起的組織損傷、組織因子暴露、炎癥因子瀑布式釋放,最終將導(dǎo)致休克、低氧血癥及ACoT。因此,需要快速診斷并及早干預(yù)。目前診斷ACoT主要有兩種方式:凝血功能檢查和血栓彈力圖TEG(thromboelastography)。
凝血功能檢查包括PT、APTT和INR和凝血因子。目前ACoT的實(shí)驗(yàn)室診斷標(biāo)準(zhǔn)(其中一項(xiàng)):(1)PT>18s;(2)APTT>60s;(3)凝血酶時(shí)間(thrombin time,TT)>15s;(4)凝血酶原時(shí)間比值(prothrombin time ratio,PTr)>1.6 ;(5)有活動(dòng)性出血或潛在出血,需要血液制品或者替代治療[53]。凝血功能檢測(cè)簡(jiǎn)便,但不能反應(yīng)血小板功能、凝血酶及整個(gè)凝血系統(tǒng)的功能。
TEG 和旋轉(zhuǎn)式血栓彈力圖(rotational thromboelastometry,ROTEM)則可測(cè)量凝血塊強(qiáng)度及血凝塊形成時(shí)間,其優(yōu)勢(shì)在于獲取結(jié)果迅速,反應(yīng)系統(tǒng)凝血功能,因此可及時(shí)診斷創(chuàng)傷性出血,同時(shí)指導(dǎo)臨床補(bǔ)液。大量研究表明,TEG和ROTEM在診斷ACoT方面優(yōu)于傳統(tǒng)的止凝血功能檢測(cè),因?yàn)槠湓\斷敏感性更高[54]。通過(guò)TEG測(cè)定能夠更早期診斷ACoT。理解ACoT的機(jī)制有助于指導(dǎo)糾正急性凝血功能紊亂。近年來(lái)?yè)p傷限制性液體復(fù)蘇已經(jīng)得到廣泛應(yīng)用,這一治療措施可縮短休克持續(xù)時(shí)間,降低血液稀釋和低體溫發(fā)生的風(fēng)險(xiǎn)[55]。臨床研究發(fā)現(xiàn),新鮮冰凍血漿、重組FⅦa、抗纖溶及維生素B6聯(lián)用豐諾安等治療對(duì)糾正ACoT患者凝血功能紊亂可能有積極的作用[56-57]。歐洲的治療指南提出,快速創(chuàng)傷評(píng)估、院前急救、院內(nèi)管理及凝血對(duì)癥處理應(yīng)作為指導(dǎo)臨床醫(yī)師救治ACoT的一般程序,并建議將其納入臨床路徑管理,有助于指南的實(shí)施[2]。
從本文看出,蛋白質(zhì)C系統(tǒng)、內(nèi)皮系統(tǒng)損傷及PMPs可能在ACoT的發(fā)病中起著重要的作用。因此,需要進(jìn)一步研究其發(fā)病的分子機(jī)制,希望能尋找新的治療靶點(diǎn),以提供直接有效的治療措施,改善患者預(yù)后。
[1] Collaborators USBoD.The state of Us health,1990-2010: burden of diseases,injuries,and risk factors[J].JAMA,2013,310(6):591-606.
[2] Rossaint R,Bouillon B,Cerny V,et al.The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition[J].Crit Care,2016,20:100.
[3] 中國(guó)研究型醫(yī)院學(xué)會(huì)衛(wèi)生應(yīng)急學(xué)專業(yè)委員會(huì),中國(guó)中西醫(yī)結(jié)合學(xué)會(huì)災(zāi)害醫(yī)學(xué)專業(yè)委員會(huì).急性創(chuàng)傷性凝血功能障礙與凝血病診斷和衛(wèi)生應(yīng)急處理專家共識(shí)(2016)[J].中華衛(wèi)生應(yīng)急電子雜志,2016,2(4):197-203.
[4] Davenport R.Pathogenesis of acute traumatic coagulopathy[J].Transfusion,2013,53(S1):S23-27.
[5] Ganter MT,Pittet JF.New insights into acute coagulopathy in trauma patients[J].Best Pract Res Clin Anaesthesiol,2010,24(1):15-25.
[6] Scott R,Crosby WH.Changes in the coagulation mechanism following wounding and resuscitation with stored blood; a study of battle casualties in Korea[J].Blood,1954,9(6):609-621.
[7] Brohi K,Singh J,Heron M,et al.Acute traumatic coagulopathy[J].J Trauma Acute Care Surg,2003,54(6):1127-130.
[8] Simmons RL,Collins JA,Heisterkamp CA,et al.Coagulation disorders in combat casualties.I.Acute changes after wounding.II.Effects of massive transfusion.3.Post-resuscitative changes[J].Ann Surg,1969,169(4):455.
[9] Esmon CT.The protein C pathway[J].Chest,2003,124(3S):S26-32.
[10] Ponomareva AA,Nevzorova TA,Mordakhanova ER,et al.Structural characterization of platelets and platelet microvesicles[J].Tsitologiia,2016,58(2):105-114.
[11] Johansson PI,Stensballe J,Rasmussen LS,et al.A high admission syndecan-1 level,a marker of endothelial glycocalyx degradation,is associated with inflammation,protein C depletion,fibrinolysis,and increased mortality in trauma patients[J].Ann Surg,2011,254(2):194-200.
[12] Kleinegris MC,Ten Cate-Hoek AJ,Ten Cate H.Coagulation and the vessel wall in thrombosis and atherosclerosis[J].Pol Arch Med Wewn,2012,122(11):557-566.
[13] Popovic M,Smiljanic K,Dobutovic B,et al.Thrombin and vascular inflammation[J].Mol Cell Biochem,2012,359(1-2):301-313.
[14] Winn RK,Harlan JM.The role of endothelial cell apoptosis in inflammatory and immune diseases[J].J Thromb Haemost,2005,3(8):1815-1824.
[15] Johansson PI,Stensballe J,Rasmussen LS,et al.High circulating adrenaline levels at admission predict increased mortality after trauma[J].J Trauma Acute Care Surg,2012,72(2):428-436.
[16] Hunt BJ,Jurd KM.Endothelial cell activation.A central pathophysiological process[J].BMJ,1998,316(7141):1328-1329.
[17] van den Berg BM,Nieuwdorp M,Stroes ES,et al.Glycocalyx and endothelial (dys) function: from mice to men[J].Pharmacol Rep,2006,58(S):75-80.
[18] Senzolo M,Coppell J,Cholongitas E,et al.The effects of glycosaminoglycans on coagulation: a thromboelastographic study[J].Blood Coagul Fibrinolysis,2007,18(3):227-236.
[19] Ostrowski SR,Johansson PI.Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy[J].J Trauma Acute Care Surg,2012,73(1):60-66.
[20] American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis[J].Crit Care Med,1992,20(6):864-874.
[21] Xu L,Yu WK,Lin ZL,et al.Chemical sympathectomy attenuates inflammation,glycocalyx shedding and coagulation disorders in rats with acute traumatic coagulopathy[J].Blood Coagul Fibrinolysis,2015,26(2):152-160.
[22] Xu L,Yu WK,Lin ZL,et al.Impact of beta-adrenoceptor blockade on systemic inflammation and coagulation disturbances in rats with acute traumatic coagulopathy[J].Med Sci Monit,2015,21:468-476.
[23] Kozar RA,Peng Z,Zhang R,et al.Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock[J].Anesth Analg,2011,112(6):1289-1295.
[24] Stansbury LG,Hess AS,Thompson K,et al.The clinical significance of platelet counts in the first 24 hours after severe injury[J].Transfusion,2013,53(4):783-789.
[25] Brohi K,Cohen MJ,Ganter MT,et al.Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis[J].J Trauma,2008,64(5):1211-1217.
[26] Cohen MJ,Call M,Nelson M,et al.Critical role of activated protein C in early coagulopathy and later organ failure,infection and death in trauma patients[J].Ann Surg,2012,255(2):379-385.
[27] Floccard B,Rugeri L,F(xiàn)aure A,et al.Early coagulopathy in trauma patients: an on-scene and hospital admission study[J].Injury,2012,43(1):26-32.
[28] Chesebro BB,Rahn P,Carles M,et al.Increase in activated protein C mediates acute traumatic coagulopathy in mice[J].Shock,2009,32(6):659-665.
[29] Rezaie AR.Regulation of the protein C anticoagulant and antiinflammatory pathways[J].Curr Med Chem,2010,17(19):2059-2069.
[30] Esmon CT.Protein C pathway in sepsis[J].Ann Med,2002,34(7-8):598-605.
[31] Hermans J,McDonagh J.Fibrin: structure and interactions[J].Semin Thromb Hemost,1982,8(1):11-24.
[32] Blomback B,Hessel B,Hogg D,et al.A two-step fibrinogen--fibrin transition in blood coagulation[J].Nature,1978,275(5680):501-505.
[33] Schochl H,Nienaber U,Hofer G,et al.Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate[J].Crit Care,2010,14(2):R55.
[34] Rourke C,Curry N,Khan S,et al.Fibrinogen levels during trauma hemorrhage,response to replacement therapy,and association with patient outcomes[J].J Thromb Haemost,2012,10(7):1342-1351.
[35] Raza I,Davenport R,Rourke C,et al.The incidence and magnitude of fibrinolytic activation in trauma patients[J].J Thromb Haemost,2013,11(2):307-314.
[36] Schochl H,F(xiàn)rietsch T,Pavelka M,et al.Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry[J].J Trauma,2009,67(1):125-131.
[37] Kashuk JL,Moore EE,Sawyer M,et al.Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma[J].Ann Surg,2010,252(3):434-444.
[38] van Hinsbergh VW,Bertina RM,van Wijngaarden A,et al.Activated protein C decreases plasminogen activator-inhibitor activity in endothelial cell-conditioned medium[J].Blood,1985,65(2):444-451.
[39] Lustenberger T,Relja B,Puttkammer B,et al.Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) levels are decreased in patients with trauma-induced coagulopathy[J].Thromb Res,2013,131(1):e26-30.
[40] Kornblith LZ,Kutcher ME,Redick BJ,et al.Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis[J].J Trauma Acute Care Surg,2014,76(2):255-263.
[41] Kutcher ME,Redick BJ,McCreery RC,et al.Characterization of platelet dysfunction after trauma[J].J Trauma Acute Care Surg,2012,73(1):13-19.
[42] Moore HB,Moore EE,Lawson PJ,et al.Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock[J].Surgery,2015,158(2):386-392.
[43] Moore HB,Moore EE,Chapman MP,et al.Viscoelastic measurements of platelet function,not fibrinogen function,predicts sensitivity to tissue-type plasminogen activator in trauma patients[J].J Thromb Haemost,2015,13(10):1878-1887.
[44] Sinauridze EI,Kireev DA,Popenko NY,et al.Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets[J].Thromb Haemost,2007,97(3):425-434.
[45] Suades R,Padro T,Vilahur G,et al.Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques[J].Thromb Haemost,2012,108(6):1208-1219.
[46] Windelov NA,Johansson PI,Sorensen AM,et al.Low level of procoagulant platelet microparticles is associated with impaired coagulation and transfusion requirements in trauma patients[J].J Trauma Acute Care Surg,2014,77(5):692-700.
[47] Chironi GN,Boulanger CM,Simon A,et al.Endothelial microparticles in diseases[J].Cell Tissue Res,2008,335(1):143.
[48] Curry N,Raja A,Beavis J,et al.Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality[J].J Extracell Vesicles,2014,3:25625.
[49] Cosgriff N,Moore EE,Sauaia A,et al.Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited[J].J Trauma,1997,42(5):857-862.
[50] Jansen JO,Scarpelini S,Pinto R,et al.Hypoperfusion in severely injured trauma patients is associated with reduced coagulation factor activity[J].J Trauma,2011,71(5S1):S435-440.
[51] Dirkmann D,Radu-Berlemann J,Gorlinger K,et al.Recombinant tissue-type plasminogen activator-evoked hyperfibrinolysis is enhanced by acidosis and inhibited by hypothermia but still can be blocked by tranexamic acid[J].J Trauma Acute Care Surg,2013,74(2):482-488.
[52] Bolliger D,Szlam F,Molinaro RJ,et al.Finding the optimal concentration range for fibrinogen replacement after severe haemodilution: an in vitro model[J].Br J Anaesthesia,2009,102(6):793-799.
[53] 岳茂興,黃琴梅,梁華平,等.嚴(yán)重創(chuàng)傷后凝血病的早期診斷與新療法治療[C].2015第十一屆全國(guó)中西醫(yī)結(jié)合災(zāi)害醫(yī)學(xué)大會(huì)暨江蘇省中西醫(yī)結(jié)合學(xué)會(huì)第二屆災(zāi)害醫(yī)學(xué)學(xué)術(shù)會(huì)議論文集,2015:42-45.
[54] Carroll RC,Craft RM,Langdon RJ,et al.Early evaluation of acute traumatic coagulopathy by thrombelastography[J].Transl Res,2009,154(1):34-39.
[55] Mohan D,Milbrandt EB,Alarcon LH.Black Hawk down: the evolution of resuscitation strategies in massive traumatic hemorrhage[J].Crit Care,2008,12(4):305.
[56] Borgman MA,Spinella PC,Perkins JG,et al.The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital[J].J Trauma,2007,63(4):805-813.
[57] 岳茂興,周培根,梁華平,等.創(chuàng)傷性凝血功能障礙的早期診斷和20AA復(fù)方氨基酸聯(lián)用大劑量維生素B6新療法應(yīng)用[J].中華衛(wèi)生應(yīng)急電子雜志,2015,(1):4-7.