鄭孟杰, 李繼洲, 靳紅梅, 張松賀①
(1.河海大學(xué)環(huán)境學(xué)院, 江蘇 南京 210098; 2.江蘇省農(nóng)業(yè)科學(xué)院循環(huán)農(nóng)業(yè)研究中心, 江蘇 南京 210014)
沉水植物生物炭對(duì)Cr6+和磷的吸附特性
鄭孟杰1,2, 李繼洲1, 靳紅梅2, 張松賀1①
(1.河海大學(xué)環(huán)境學(xué)院, 江蘇 南京 210098; 2.江蘇省農(nóng)業(yè)科學(xué)院循環(huán)農(nóng)業(yè)研究中心, 江蘇 南京 210014)
生物炭作為吸附劑已廣泛應(yīng)用于重金屬及磷污染廢水處理,成為環(huán)境科學(xué)領(lǐng)域研究的前沿?zé)狳c(diǎn)。沉水植物量大源廣,可作為生物炭的制備原料,但其對(duì)Cr6+和磷的去除研究相對(duì)缺乏。選取常見的沉水植物(眼子菜、苦草和金魚藻),在350、450和600 ℃溫度下熱解,研究其在不同初始pH值與平衡時(shí)間下對(duì)Cr6+和磷的吸附性能。結(jié)果表明:酸性條件更有利于沉水植物生物炭對(duì)Cr6+和磷的吸附,其中350 ℃條件下制備的金魚藻生物炭和眼子菜生物炭對(duì)Cr6+和磷的吸附量最大,分別為0.094 2(pH=4)和0.338 1 mmol·g-1(pH=6)。沉水植物生物炭對(duì)Cr6+和磷的吸附遵循準(zhǔn)二級(jí)動(dòng)力學(xué)模型,表明吸附過程由化學(xué)吸附占主導(dǎo)地位。沉水植物生物炭富含羧基、羥基等含氧官能團(tuán),除450 ℃條件下制備的苦草生物炭零電荷點(diǎn)(pHzpc)是6以外,其余樣品pHzpc均為8。吸附Cr6+和磷后,生物炭表面變得更粗糙,褶皺明顯并出現(xiàn)亮斑,Cr6+和磷含量明顯增加。沉水植物生物炭因其獨(dú)特的物理化學(xué)結(jié)構(gòu),可制備多孔炭用于污染物吸附等領(lǐng)域。
沉水植物; 生物炭; 吸附; Cr6+; 磷
近年來我國水污染問題已成為社會(huì)焦點(diǎn)和研究熱點(diǎn)[1-5],其中,重金屬及磷的污染問題尤為突出。重金屬中毒濃度通常較低,具有一定的移動(dòng)性,一旦進(jìn)入水體很難處理,可通過食物鏈危害人類健康,并進(jìn)一步惡化水環(huán)境質(zhì)量。據(jù)GB/T 14848—93《地下水質(zhì)量標(biāo)準(zhǔn)》,Ⅱ類水體中Cr6+的最高容許質(zhì)量濃度僅為1.5 μg·L-1,但多數(shù)水體中Cr6+濃度遠(yuǎn)超過此值。2011年云南曲靖市隨意傾倒大量鉻渣致使污水嚴(yán)重威脅珠江源頭,造成大量動(dòng)物傷亡[6]。除此之外,農(nóng)業(yè)生產(chǎn)中磷肥的大量使用及工業(yè)生產(chǎn)和生活中含磷洗滌劑的濫用可造成大面積水體磷污染,加重水體富營養(yǎng)化程度。針對(duì)水體重金屬污染及磷的富營養(yǎng)化問題,眾多專家學(xué)者已進(jìn)行相對(duì)深入的研究,同時(shí)采取多種方法對(duì)重金屬及磷污染水體進(jìn)行處理和修復(fù)。目前針對(duì)重金屬和磷污染常用的處理方法有吸附法[7-8]、沉淀法[9-10]、鐵氧體法[11]、溶劑萃取分離膜技術(shù)法[12]等。后3種方法普遍存在成本高、操作難、二次污染嚴(yán)重、出水難達(dá)標(biāo)、受溶度積限制等弊端[13-14];而吸附法具備多種優(yōu)點(diǎn),如價(jià)格低廉,操作簡便、安全,吸附前后pH值變化幅度小,同時(shí)對(duì)于吸附飽和后的生物炭可經(jīng)洗脫后再利用。篩選出制備成本低、吸附效率高、環(huán)境友好的吸附劑是利用吸附法大規(guī)模處理水污染的最重要環(huán)節(jié)。
利用固體廢棄物制備的熱解生物炭(即原料含水率w<10%,在缺氧環(huán)境下,400~800 ℃條件下熱解的產(chǎn)物)與活性炭性質(zhì)相似,但其價(jià)格只有活性炭的1/10,逐漸受到環(huán)境界專家學(xué)者的青睞,被廣泛應(yīng)用于廢水治理,在水體重金屬和磷吸附中,具有突出性能[15]。例如,XU等[16]在350 ℃條件下制備牛糞炭,用其處理含鋅和含銅廢水,吸附量分別高達(dá)32.8和54.4 mg·g-1;HAN等[17]利用水稻秸稈在400 ℃條件下制備生物炭去除水溶液中鎘,吸附量可達(dá)34.13 mg·g-1;SHEN等[18]研究了不同熱解溫度(250、350、500和600 ℃)條件下制備的椰糠生物炭對(duì)Cr6+的吸附特性。
原料類型及熱解條件是造成生物炭疏水性、比表面積、孔隙性以及官能團(tuán)豐富度等差異的最主要原因[19]。目前,常用的制備生物炭的固體廢棄物主要有農(nóng)作物秸稈[20]、畜禽糞便[15,21]、果園修剪枝條[22-24]以及工業(yè)廢物[25]等。沉水植物生長于水體,植株含水率高,葉片較薄,具有吸收水體中大量污染物質(zhì)、抑制藻類和懸浮沉積物等功能,常用于水體修復(fù)。在生態(tài)修復(fù)過程中,通常在秋季將沉水植物打撈出來,防止其衰敗過程釋放大量營養(yǎng)物質(zhì)。沉水植物富含豐富的碳源,量大源廣,然而如何處理沉水植物殘?bào)w和進(jìn)行資源化利用是當(dāng)前面臨的問題之一。吳晴雯等[26]在500 ℃熱解溫度下制備的蘆葦生物炭對(duì)Ni2+的吸附量達(dá)11.93 mg·g-1,而對(duì)目前常見的以沉水植物為原料制備生物炭的研究則鮮有報(bào)道。
為此,筆者選取眼子菜(Potamogetoncrispus)、苦草(Vallisnerianatans)和金魚藻(Ceratophyllumdemersum)3種代表性沉水植物,通過熱解方式制備生物炭,用其處理含鉻(Ⅵ)和含磷廢水,旨在為沉水植物的循環(huán)、高值利用提供理論支撐。
試驗(yàn)所需沉水植物眼子菜(Y)、苦草(K)和金魚藻(J)采自南京高淳的水生植物種植基地。于10月沉水植物處于旺盛期時(shí),選取生長狀況良好、植株大小相近的植物,一次性采樣。植株用自來水清洗后在98 ℃條件下殺青20 min,然后置于55 ℃烘箱中烘至恒重。將烘干的植物截取成3~5 cm長度裝于自封袋,保存在干燥器中以備用。
將已經(jīng)烘干的樣品分裝于陶瓷坩堝后壓實(shí),密閉。將裝有樣品的陶瓷坩堝置于氣氛爐中,高純氮?dú)獗Wo(hù)下分別于350 ℃下4 h、450 ℃下4 h、600 ℃下1 h裂解,待反應(yīng)結(jié)束后冷卻至室溫,并研磨過0.180 mm孔徑篩。利用眼子菜、苦草和金魚藻所獲得生物炭樣品分別標(biāo)記為Y350/Y450/Y600、K350/K450/K600和J350/J450/J600,數(shù)字代表其炭化的溫度。炭化樣品在1 mol·L-1HF+HCl中浸泡4 h后在轉(zhuǎn)速為10 000 r·min-1條件下離心5 min(離心半為3.5 cm),棄去廢液,此過程重復(fù)3次以去除焦油、無機(jī)鹽等熱解副產(chǎn)物[27]。將酸洗后的生物炭用去離子水反復(fù)沖洗至pH值恒定,干燥,裝于自封袋中密閉保存以備后續(xù)用于吸附和表征。
采用靜態(tài)批示法,以單一因素作為唯一變量,研究初始pH值和反應(yīng)時(shí)間對(duì)沉水植物生物炭吸附Cr6+和磷效果的影響。實(shí)驗(yàn)所用含Cr6+和含磷廢水分別用重鉻酸鉀和磷酸二氫鉀(分析純)配制,其模擬廢水均采用單一溶液,對(duì)成分復(fù)雜的實(shí)際廢水的探討作為后期實(shí)驗(yàn)的重點(diǎn)。
(1)不同初始pH值條件下的吸附
25 ℃條件下,精準(zhǔn)稱取0.1 g生物炭投加于含100 mL模擬廢水〔其中ρ(Cr6+)為10 mg·L-1,ρ(P)為50 mg·L-1〕的250 mL三角瓶中。然后,用精密pH計(jì)調(diào)節(jié)溶液初始pH值為2、4、6、8、10、12,于恒溫振蕩器中按180 r·min-1振蕩3 h,待吸附結(jié)束后靜置2 h,取上清液測(cè)定其pH值,過0.22 μm孔徑濾膜以測(cè)定濾液中Cr6+和磷殘余濃度。
(2)動(dòng)力學(xué)吸附實(shí)驗(yàn)
于25 ℃條件下,精準(zhǔn)稱取0.1 g生物炭投加于含100 mL上述模擬廢水的250 mL三角瓶中,分別振蕩10、20、30、60、90、120、150、180 min后取上清液,過0.22 μm孔徑濾膜,測(cè)定其中Cr6+和磷殘余濃度。
吸附后磷濃度的測(cè)定采用AA3全自動(dòng)連續(xù)流動(dòng)分析儀分析[28],Cr6+濃度的測(cè)定采用GB 7467—87《二苯碳酰二肼分光光度法》。其中,沉水植物生物炭對(duì)Cr6+和磷吸附量的計(jì)算公式為
Q=(C0-Ce)·V/m。
(1)
式(1)中,C0為溶液中Cr6+和磷的初始濃度,mg·L-1;Ce為反應(yīng)結(jié)束時(shí)殘液中Cr6+和磷濃度,mg·L-1;V為量取的目標(biāo)溶液體積,mL;m為生物炭投加量,g;Q為生物炭吸附量,mg·g-1。
生物炭的微觀相貌和元素組成利用掃描電子顯微鏡/X射線能譜(SEM/EDS)聯(lián)合分析。電子顯微鏡(EVO-LS10CARL ZEISS JENA,Germany)可直接用來觀察活性炭的微觀形貌,具有觀察多角度、圖像立體感強(qiáng)、分辨率高、樣品所受污染和損害小等特點(diǎn)[29];X射線能譜具有成分分析功能,既可以定性分析樣品中存在的元素種類,也可以定量分析元素的相對(duì)含量。樣品先研磨至粉末狀,用雙面膠紙將其粘結(jié)于樣品座上,再均勻地把粉末樣撒在上面,用洗耳球吹去未粘住的粉末,鍍上導(dǎo)電膜,于電壓為5.0 kV與放大倍數(shù)為10.0 k條件下電鏡觀察。
生物炭表面的質(zhì)子化及去質(zhì)子化作用使其表面形成雙電子層結(jié)構(gòu),表面電荷為零時(shí)溶液對(duì)應(yīng)的pH值稱作零電荷點(diǎn)(pHzpc),用精密pH計(jì)調(diào)節(jié)溶液初始pH值為2、4、6、8、10、12,并用精密pH計(jì)測(cè)定吸附后溶液對(duì)應(yīng)的pH值,吸附前后兩者差值為零時(shí)所對(duì)應(yīng)的pH值(pHzpc),根據(jù)pHzpc不僅可以為生物炭的吸附提供一定理論依據(jù),而且可以預(yù)測(cè)不同pH值條件下生物炭的吸附能力,從而指導(dǎo)生物炭吸附的相關(guān)研究[30]。
表面官能團(tuán)的分析采用紅外光譜(FTIR,Thermo Scientific,Nicolet S10)掃描定性,FTIR常用來分析材料表面官能團(tuán)、分子結(jié)構(gòu)和化學(xué)鍵。生物炭的特殊成分使其對(duì)紅外線吸收強(qiáng)烈,因此常用于表征生物炭性能[31]。該實(shí)驗(yàn)中FTIR的表征采用KBr壓片法,掃描范圍為600~4 000 cm-1。
生物炭產(chǎn)率隨著溫度的升高而逐漸降低,可能是高溫條件下沉水植物裂解程度增加,纖維素、木質(zhì)素等大量分解導(dǎo)致[32]。表1列出不同原料制備的生物炭樣品中C、O、N含量百分比,C含量居首,N、O次之,但沉水植物生物炭中C含量均高于50%,明顯高于ROZADA等[33]制備的活性污泥生物炭,也高于CHEN等[34]在250和400 ℃條件下制備的柑橘皮生物炭,進(jìn)一步證明沉水植物生物炭碳源豐富,是制備生物炭的理想材料。
表1樣品基本元素含量
Table1Contentsofbasicelementsinthesamples
樣品w/%CON文獻(xiàn)來源Y35063.219.0117.79該研究K45061.020.1918.67該研究J35058.920.1220.94該研究HW65029.814.193.76[33]MOP25035.11.12[34]MOP40029.40.51[34]
Y350為350 ℃制備的眼子菜生物炭,K450為450 ℃制備的苦草生物炭,J350為350 ℃制備的金魚藻生物炭,HW650為650 ℃條件下制備的活性污泥生物炭,MOP250為250 ℃條件下制備的磁性生物炭,MOP400為400 ℃條件下制備的磁性生物炭。
圖1是溶液初始pH值對(duì)Cr6+/磷單一模擬廢水吸附效果的影響,溶液初始pH值會(huì)影響Cr6+和磷的存在形式以及生物炭表面的電荷分布,進(jìn)而間接影響生物炭的吸附能力[35]。從圖1可以看出,隨pH值升高,樣品的吸附量迅速增加,pH值為4時(shí)對(duì)Cr6+的吸附達(dá)到最大,之后逐漸降低;而對(duì)磷的吸附在pH值為6時(shí)達(dá)到吸附峰值,特別是Y350吸附量高達(dá)0.338 1 mmol·g-1,隨后當(dāng)pH增大時(shí),吸附量出現(xiàn)不同程度的下降。實(shí)驗(yàn)結(jié)果表明過酸或過堿的環(huán)境不利于生物炭的吸附,這與HAN等[17]報(bào)道的水稻秸稈生物炭對(duì)鎘吸附結(jié)論一致。較低的pH值可能會(huì)破壞生物炭與吸附質(zhì)之間的鍵能[36],pH值過低時(shí)鉻通常以Cr3+形態(tài)存在,磷以分子形式存在[37],不易被吸附,偏酸環(huán)境下生物炭表面官能團(tuán)的質(zhì)子化作用更為明顯,使得生物炭對(duì)溶液中以陰離子狀態(tài)存在的Cr2O72-和PO42-表現(xiàn)出更強(qiáng)的靜電引力吸附作用,這也可能是導(dǎo)致沉水植物生物炭在酸性條件下吸附效果更好的原因。
分別用準(zhǔn)一級(jí)和準(zhǔn)二級(jí)動(dòng)力學(xué)方程對(duì)吸附過程進(jìn)行擬合,得到擬合曲線(圖2~3),對(duì)應(yīng)的擬合參數(shù)見表2。
由吸附動(dòng)力學(xué)模型曲線(圖2)可知,吸附初期,曲線的斜率較大,隨著時(shí)間的延長吸附量急劇上升,60 min后達(dá)到吸附平衡,說明反應(yīng)時(shí)間設(shè)定為3 h是足夠的,同時(shí)也為后續(xù)吸附時(shí)間的設(shè)定提供理論依據(jù)。從表2可以看出,準(zhǔn)二級(jí)動(dòng)力學(xué)模型的R2較高,與實(shí)測(cè)數(shù)據(jù)點(diǎn)符合程度最好,說明沉水植物生物炭對(duì)Cr6+和磷的吸附更符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型,其吸附過程主要受化學(xué)吸附控制,同時(shí),速率常數(shù)k1、k2反映整個(gè)吸附過程的快慢,其值越大,表明達(dá)到吸附平衡的時(shí)間越短。表2中不同樣品的速率常數(shù)存在差異,表明不同原料不同熱解溫度條件下制備的生物炭的吸附速率則不同。樣品K450吸附磷的速率常數(shù)明顯高于其他樣品,最早達(dá)到吸附平衡,這與圖2中結(jié)果相符。
圖1 初始pH值對(duì)Cr6+和磷吸附效果的影響Fig.1 Effect of initial pH on adsorption of Cr6+ and phosphorus
qt為t時(shí)刻的吸附量。
2.4.1掃描電鏡/能譜分析
選取吸附效果較好的Y350、K450、J350進(jìn)行掃描電鏡/能譜分析。從圖4可以看出,吸附前后樣品形貌發(fā)生很大變化,眼子菜吸附磷后紋路變得清晰可見,表面更粗糙;對(duì)比苦草的電鏡圖,吸附前的樣品表面凹凸不平,不規(guī)則的長條溝渠附著很多凸起,可能是熱解過程中形成的碳微球,然而吸附Cr6+/磷后,原始的凸起被微小的孔洞代替,應(yīng)該是碳微球參與了吸附過程,為吸附提供一定的吸附位;金魚藻表面相對(duì)粗糙,吸附后樣品表面褶皺更加明顯,且出現(xiàn)很多亮斑。
qt為t時(shí)刻的吸附量。
表2生物炭吸附Cr6+和磷的動(dòng)力學(xué)模型擬合參數(shù)
Table2ParametersofthekineticsmodelsfittingCr6+andphosphorusadsorptionsbybiochar
樣品初始濃度/(mg·L-1)實(shí)際平衡吸附量/(mg·g-1)準(zhǔn)一級(jí)動(dòng)力學(xué)模型準(zhǔn)二級(jí)動(dòng)力學(xué)模型qe/(mg·g-1)k1/(g·mg-1·min-1)R2qe/(mg·g-1)k2/(g·mg-1·min-1)R2Y3505020.7921.330.1060.962523.360.0030.9917Y4505013.4113.370.0650.953615.520.0030.9881Y6005015.3514.180.0990.953614.160.0140.9686K3505019.1119.800.1090.727318.110.0350.9870K4505013.5913.591.1410.861613.140.1520.9878K6005015.4912.460.0880.618611.530.0320.9859J3505019.0824.360.0640.891929.850.0010.9780J4505017.1013.450.1900.715711.420.0530.9384J6005017.4616.660.1290.930916.970.0090.9861Y350103.553.630.0820.95134.840.0050.9730Y450103.042.880.1030.93282.970.0570.9950Y600103.173.010.1100.88383.130.0380.9744K350103.643.690.0530.98184.260.1070.9834K450103.533.580.0500.92634.290.0090.9758K600102.742.810.1100.95833.070.0270.9868J350103.163.340.0630.98253.790.0150.9933J450103.353.400.0670.98043.860.0150.9890J600102.502.500.0790.97352.710.0260.9772
Y、K、J分別代表眼子菜、苦草和金魚藻,后面的數(shù)值代表炭化溫度;qe為理論吸附量;k1、k2為動(dòng)力學(xué)常數(shù)。
表3是Y350、K450和J350經(jīng)EDS表征后C、N、O、P、Cr6+在吸附前后相對(duì)含量的變化。3種沉水植物生物炭富含豐富的碳源,其含量均在50%以上,N和O含量僅次于C,但這3種元素的相對(duì)含量在吸附前后并沒有發(fā)生很大變化;而磷僅在吸附后的樣品表征結(jié)果中相對(duì)含量明顯增加,特別是Y350吸附磷后含量增加到2.79%,同時(shí)也與前文所提到的Y350對(duì)磷吸附效果最好的結(jié)論相一致,同樣地,J350對(duì)Cr6+吸附量相對(duì)最高,EDS表征結(jié)果也顯示其Cr6+相對(duì)含量在吸附前后變化最大。
A—Y350; B—K450; C—J350; 0—吸附前; 1—吸附磷; 2—吸附Cr6+。
表3沉水植物生物炭吸附前后元素相對(duì)含量變化
Table3Relativecontentsofelementsinsubmergedplantbiocharbeforeandafteritsuseinadsorptionofpollutants
樣品吸附前吸附后w(P)/%w(Cr6+)/%w(P)/%w(Cr6+)/%Y350002.790.01K450000.540J3500.0200.130.29
2.4.2零電荷點(diǎn)
圖5為3種沉水植物經(jīng)不同熱解處理后的pHzpc圖,可以看出,除K450以外,其余樣品pHzpc保持在8附近,進(jìn)一步說明溶液pH值為8時(shí),沉水植物生物炭表面的正負(fù)電荷數(shù)相等,同時(shí)也證明對(duì)Cr6+/磷吸附最佳pH值維持在弱酸性,因?yàn)樵谒嵝詶l件下,生物炭表面與過量質(zhì)子結(jié)合而帶正電,有利于對(duì)帶負(fù)電的Cr2O72-/PO42-的吸附。
2.4.3傅里葉紅外光譜分析
選取Y350、K450和J350這3種樣品進(jìn)行表征,結(jié)果見圖6。3種沉水植物生物炭的紅外吸收峰極其類似,表明它們?cè)诠倌軋F(tuán)結(jié)構(gòu)和種類上具有高度一致性,但樣品吸附前后一些特征吸收峰發(fā)生變化。3種樣品在波數(shù)3 300 cm-1處寬而強(qiáng)的吸收峰是O—H的伸縮振動(dòng)峰,同時(shí)波數(shù)2 980 cm-1處顯示的是飽和烴C—H,但K450吸收峰較微弱,說明較高熱解溫度會(huì)使烷基缺失,從而提高生物炭的芳香化程度。
圖5 樣品零電荷點(diǎn)Fig.5 pHzpc of the samples
圖6 樣品紅外吸收光譜Fig.6 FTIR of the samples
選用眼子菜、苦草、金魚藻3種代表性沉水植物為原材料,通過熱解方式制備生物炭,將其用于治理含Cr6+和磷廢水,所得主要結(jié)論如下:
(1)表面帶有一定正電荷的生物炭樣品在酸性條件下對(duì)Cr6+和磷的吸附效果最佳;pH值為4時(shí)J350對(duì)Cr6+吸附量為0.094 2 mmol·g-1;Y350在pH值為6時(shí)對(duì)磷吸附量高達(dá)0.338 1 mmol·g-1。
(2)沉水植物生物炭對(duì)Cr6+和磷的吸附更符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型,說明吸附過程受化學(xué)吸附控制,且不同樣品的吸附速率常數(shù)存在差異。
(3)沉水植物生物炭表面結(jié)構(gòu)及官能團(tuán)(如羧基、羥基等含氧官能團(tuán))差異是影響生物炭對(duì)Cr6+和磷吸附效果的主要原因。
[1] LIN Y S,MA X Q,PENG X W,etal.A Mechanism Study on Hydrothermal Carbonization of Waste Textile[J].Energy Fuels,2016,30(9):7746-7754.
[2] LU X W,JORDAN B,BERGE N D.Thermal Conversion of Municipal Solid Waste via Hydrothermal Carbonization:Comparison of Carbonization Products to Products From Current Waste Management Techniques[J].Waste Management,2012,32(7):1353-1365.
[3] LIM H S,LEE J S,CHON H T,etal.Heavy Metal Contamination and Health Risk Assessment in the Vicinity of the Abandoned Songcheon Au-Ag Mine in Korea[J].Journal of Geochemical Exploration,2008,96(2/3):223-230.
[4] ZHENG N,LIU J H,WANG Q C,etal.Health Risk Assessment of Heavy Metal Exposure to Street Dust in the Zinc Smelting District,Northeast of China[J].Science of the Total Environment,2010,408(4):726-733.
[6] 郭楠,田義文.中國環(huán)境公益訴訟的實(shí)踐障礙及完善措施:從云南曲靖市鉻污染事件談起[J].環(huán)境污染與防治,2013,35(1):96-99.[GUO Nan,TIAN Yi-wen.The Practical Obstacles and Improvement Measures of Environment Public Interest Litigation in China Taking Example of Chromium Pollution Incident in Qujing,Yunnan[J].Environmental Pollution & Control,2013,35(1):96-99.]
[7] 干方群,周健民,王火焰,等.不同黏土礦物對(duì)磷污染水體的吸附凈化性能比較[J].生態(tài)環(huán)境,2008,17(3):914-917.[GAN Fang-qun,ZHOU Jian-min,WANG Huo-yan,etal.Phosphate Adsorption Capacities of Different Clay Minerals in Phosphate-Contaminated Water[J].Ecology and Environment,2008,17(3):914-917.]
[8] 董慶潔,邵仕香,李乃瑄,等.凹凸棒土復(fù)合吸附劑對(duì)磷酸根吸附行為的研究[J].硅酸鹽通報(bào),2006,25(2):19-22.[DONG Qing-jie,SHAO Shi-xiang,LI Nai-xuan,etal.Study on the Treatment of Water Containing Phosphates With Attapulgite Compounde Adsorbents[J].Bulletin of Chinese Ceramic Society,2006,25(2):19-22.]
[9] 馬彥峰,單連斌.沉淀法處理含重金屬污水的研究[J].環(huán)境保護(hù)科學(xué),1998,24(3):1-3.[MA Yan-feng,SHAN Lian-bin.Study on Treating Wastewater Contained Heave-Metal by Sediment Method[J].Environmental Protection Science,1998,24(3):1-3.]
[10] 雷兆武,孫穎.礦山酸性廢水重金屬沉淀分離研究[J].環(huán)境科學(xué)與管理,2008,33(11):59-61.[LEI Zhao-wu,SUN Ying.Study on the Separating Heavy Metals by Precipitation in Mine Acid Wasterwater[J].Environmental Science and Management,2008,33(11):59-61.]
[11] 趙如金,吳春篤.常溫鐵氧體法處理重金屬離子廢水研究[J].化工環(huán)保,2005,25(4):263-266.[ZHAO Ru-jin,WU Chun-du.Treatment of Wasterwater Contaning Heavy Metal Ions by Ambient Temperature Ferrite Process[J].Environmental Protection of Chemical Industry,2005,25(4):263-266.]
[12] QDAIS H A,MOUSSA H.Removal of Heavy Metals From Wastewater by Membrane Processes:A Comparative Study[J].Desalination,2004,164(2):105-110.
[13] HU M X,XU P Y,WANG L D,etal.Research Progress of Heavy Metal Ions Removal in Desulfurization Wastewater[J].Water Pollution and Treatment,2016,4(3):85-90.
[14] 張建梅,韓志萍,王亞軍.重金屬廢水的治理和回收綜述[J].湖州師范學(xué)院學(xué)報(bào),2002,24(3):48-52.[ZHANG Jian-mei,HAN Zhi-ping,WANG Ya-jun.A Summary of Harnessing and Retrieval of Waste Water Containing Heavy Metals[J].Journal of Huzhou Teachers College,2002,24(3):48-52.]
[15] CAO X D,MA L N,GAO B,etal.Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine[J].Environmental Science & Technology,2009,43(9):3285-3291.
[16] XU X,CAO X,ZHAO L,etal.Removal of Cu,Zn,and Cd From Aqueous Solutions by the Dairy Manure-Derived Biochar[J].Environmental Science and Pollution Research,2013,20(1):358-368.
[17] HAN X,LIANG C F,LI T Q,etal.Simultaneous Removal of Cadmium and Sulfamethoxazole From Aqueous Solution by Rice Straw Biochar[J].Journal of Zhejiang University Science B,2013,14(7):640-649.
[18] SHEN Y S,WANG S L,TZOU Y M,etal.Removal of Hexavalent Cr by Coconut Coir and Derived Chars:The Effect of Surface Functionality[J].Bioresource Technology,2012,104:165-172.
[19] AHMAD M,RAJAPAKSHA A U,LIM J E,etal.Biochar as a Sorbent for Contaminant Management in Soil and Water:A Review[J].Chemosphere,2014,99(3):19-33.
[20] 陳再明,方遠(yuǎn),徐義亮,等.水稻秸稈生物碳對(duì)重金屬 Pb2+的吸附作用及影響因素[J].環(huán)境科學(xué)學(xué)報(bào),2012,32(4):769-776.[CHEN Zai-ming,FANG Yuan,XU Yi-liang,etal.Adsorption of Pb2+by Rice Straw Derived-Biochar and Its Influential Factors[J].Acta Scientiae Circumstantiae,2012,32(4):769-776.]
[21] ZHANG P,SUN H W,YU L,etal.Adsorption and Catalytic Hydrolysis of Carbaryl and Atrazine on Pig Manure-Derived Biochars:Impact of Structural Properties of Biochars[J].Journal of Hazardous Materials,2013,244/245:217-224.
[22] WANG S S,GAO B,ZIMMERMAN A R,etal.Removal of Arsenic by Magnetic Biochar Prepared From Pinewood and Natural Hematite[J].Bioresource Technology,2015,175:391-395.
[23] PATNUKAO P,KONGSUWAN A,PAVASANT P.Batch Studies of Adsorption of Copper and Lead on Activated Carbon FromEucalyptuscamaldulensisDehn.Bark[J].Journal of Environmental Sciences,2008,20(9):1028-1034.
[24] AROUA M K,LEONG S P P,TEO L Y,etal.Real-Time Determination of Kinetics of Adsorption of Lead(Ⅱ) Onto Palm Shell-Based Activated Carbon Using Ion Selective Electrode[J].Bioresource Technology,2008,99(13):5786-5792.
[25] 丁文川,杜勇,曾曉嵐,等.富磷污泥生物炭去除水中Pb(Ⅱ) 的特性研究[J].環(huán)境化學(xué),2012,31(9):1375-1380.[DING Wen-chuan,DU Yong,ZENG Xiao-lan,etal.Aqueous Solution Pb(Ⅱ) Removal by Biochar Derived From Phosphorus-Rich Excess Sludge[J].Environmental Chemistry,2012,31(9):1375-1380.]
[26] 吳晴雯,孟梁,張志豪,等.蘆葦秸稈生物炭對(duì)水體中重金屬 Ni2+的吸附特性[J].環(huán)境化學(xué),2015,34(9):1703-1709.[WU Qing-wen,MENG Liang,ZHANG Zhi-hao,etal.Adsorption Behaviors of Ni2+Onto Reed Straw Biochar in the Aquatic Solutions[J].Environmental Chemistry,2015,34(9):1703-1709.]
[27] 郭悅,唐偉,代靜玉,等.洗脫處理對(duì)生物質(zhì)炭吸附銅離子行為的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(7):1405-1413.[GUO Yue,TANG Wei,DAI Jing-yu,etal.Influence of Elution of Biochar on Its Adsorption of Cu(Ⅱ)[J].Journal of Agro-Environment Science,2014,33(7):1405-1413.]
[28] 趙建剛,陳園.連續(xù)流動(dòng)分析法測(cè)定不同冰凍時(shí)間水樣總磷濃度的變化[J].分析儀器,2010(5):70-72.[ZHAO Jian-gang,CHEN Yuan.Measurement of Concentrations of Total Phosphate in Water Samples With Different Frozen Time[J]Analytical Instrumentation,2010(5):70-72.]
[29] 余亮.Fe3O4/4A沸石復(fù)合材料的制備及吸附鉛離子性能的研究[D].長沙:中南大學(xué),2012.[YU Liang.Preparation of Fe3O4/4A Zeolite and Adsorption Properties of Pb(Ⅱ)[D].Changsha:Central South University,2012.]
[30] 張蕊,葛瀅.稻殼基活性炭制備及其對(duì)重金屬吸附研究[J].環(huán)境污染與防治,2011,33(1):41-45.[ZHANG Rui,GE Ying.Preparation of Rice Husk-Based Activated Carbon and Its Adsorption Capacity for Heavy Metals[J].Environmental Pollution & Control,2011,33(1):41-45,51.]
[31] 金政華.改性活性炭去除水中Cr(Ⅵ) 的試驗(yàn)研究[D].昆明:昆明理工大學(xué),2013.[JIN Zheng-hua.Research on Removal of Cr(Ⅵ) in Water by Modified Activated Carbon[D].Kunming:Kunming University of Science & Technology,2013.]
[32] FANG J,GAO B,CHEN J J,etal.Hydrochars Derived From Plant Biomass Under Various Conditions:Characterization and Potential Applications and Impacts[J].Chemical Engineering Journal,2015,267:253-259.
[33] ROZADA F,OTERO M,MORN A,etal.Activated Carbons From Sewage Sludge and Discarded Tyres:Production and Optimization[J].Journal of Hazardous Materials,2005,124(1/2/3):181-191.
[34] CHEN B L,CHEN Z M,Lü S F.A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate[J].Bioresource Technology,2010,102(2):716-723.
[35] 安增莉,侯艷偉,蔡超,等.水稻秸稈生物炭對(duì)Pb(Ⅱ) 的吸附特性[J].環(huán)境化學(xué),2011,30(11):1851-1857.[AN Zeng-li,HOU Yan-wei,CAI Chao,etal.Lead(Ⅱ) Adsorption Characteristics on Different Biochars Derived From Rice Straw[J].Environmental Chemistry,2011,30(11):1851-1857.]
[36] TANG Z,DENG Y F,LUO T,etal.Enhanced Removal of Pb(Ⅱ) by Supported Nanoscale Ni/Fe on Hydrochar Derived From Biogas Residues[J].Chemical Engineering Journal,2016,292:224-232.
[37] 李際會(huì).改性生物炭吸附硝酸鹽和磷酸鹽研究[D].北京:中國農(nóng)業(yè)科學(xué)院,2012.[LI Ji-hui.Adsorption of Nitrate and Phosphate by Modified Biochar[D].Beijing:Chinese Academy of Agricultural Sciences,2012.]
CharacterizationofCr6+andPhosphorusAdsorptionsofBiocharsDerivedFromSubmergedPlants.
ZHENG Meng-jie1,2, LI Ji-zhou1, JIN Hong-mei2, ZHANG Song-he1
(1.College of Environment, Hohai University, Nanjing 210098, China; 2.Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
Biochar has been widely used as adsorbent to treat wastewater polluted with heavy metals and phosphorus polluted water, which has become a front-line hot spot in the field of environmental science. Submerged plants, abundant in quantity and vast in availability can be utilized as raw materials of biochar. However, little has been reported about researches on characteristics of Cr6+and phosphorus removal by the biochar. Three common submerged plants (Potamogetoncrispus,VallisnerianatansandCeratophyllumdemersum) were taken and pyrolyzed at 350, 450 and 600 ℃ into biochars, which were tested for exploration of effects of initial pH and equilibrium time on Cr6+and phosphorus adsorption by the biochars. Results show that acid conditions facilitated Cr6+and phosphorus adsorptions by the biochars, J350 (biochar prepared out ofCeratophyllumdemersumat 350 ℃) and Y350 (biochar prepared out ofPotamogetoncrispusat 350 ℃) was the highest in Cr6+and phosphorus adsorption capacity, being 0.094 2 mmol·g-1at pH 4 and 0.338 1 mmol·g-1at pH 6, respectively. The adsorption of two substances followed the pseudo-second-order model, which indicates that the adsorption process was dominated with chemical adsorption. The biochars derived from submerged plants were rich in carboxyl, hydroxyl and other oxygen containing functional groups. All of the biochars were 8 in pHpzc, except for K450 (biochar prepareed out ofVallisnerianatansat 450 ℃), which was only 6. Having adsorbed Cr6+and phosphorus, the biochars had rougher surface with apparent folds and bright spot, and their contents of Cr6+and phosphate increased significantly. Because of their unique physical and chemical structure, the biochars derived from submerged plants can be prepared into porous carbon for use in pollutant adsorption and other fields.
submerged plant; biochar; adsorption; Cr6+; phosphorus
2017-04-18
國家自然科學(xué)基金(E51379063,E51579075)
① 通信作者E-mail: shzhang@hhu.edu.cn
X52; X71
A
1673-4831(2017)12-1132-08
10.11934/j.issn.1673-4831.2017.12.010
鄭孟杰(1992—),女,河南焦作人,碩士生,主要從事固體廢棄物資源化利用方面的研究。E-mail: 604844586@qq.com
陳 昕)