亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        聚碳酸酯表面涂層材料的研究進展

        2017-10-13 01:24:27
        化工技術(shù)與開發(fā) 2017年9期
        關(guān)鍵詞:涂覆基材導(dǎo)電

        舒 航

        (河南應(yīng)用技術(shù)職業(yè)學(xué)院化學(xué)工程學(xué)院,河南 鄭州 450042)

        聚碳酸酯表面涂層材料的研究進展

        舒 航

        (河南應(yīng)用技術(shù)職業(yè)學(xué)院化學(xué)工程學(xué)院,河南 鄭州 450042)

        聚碳酸酯(PC)是一種具有優(yōu)良綜合性能的工程塑料,其透光性佳、比密度高、韌性好,是傳統(tǒng)無機玻璃(硅酸鹽)和有機玻璃(聚甲基丙烯酸甲酯)的最佳替代材料,但同時,硬度低、易劃傷、耐紫外老化性差等缺點限制了其在室外環(huán)境的應(yīng)用。因此,對PC進行表面改性成為了克服和改善其缺點最有效的方法。伴隨著光學(xué)設(shè)備、新能源汽車及航空航天等領(lǐng)域的發(fā)展,市場對PC的導(dǎo)電性、抗反射性和自清潔性等性能提出了更高的要求,而表面涂層材料的使用是實現(xiàn)這些要求的有效手段。本文重點介紹了PC表面涂層材料的物理性能及最新研究進展。

        聚碳酸酯;硬度;導(dǎo)電性;抗反射性

        為了設(shè)計更加輕質(zhì)、精美、安全的工業(yè)產(chǎn)品,塑料正在逐步替代陶瓷和金屬,成為用途廣泛的新一代工業(yè)材料。聚碳酸酯(PC)由于透光性強、折射率高、密度小、韌性好,是汽車玻璃、光學(xué)透鏡、電子器件、照明燈具、建筑板材等領(lǐng)域的理想替代材料[1-5]。

        相比聚對苯二甲酸乙二醇酯(PET)和聚甲基丙烯酸甲酯(PMMA)之類的透明塑料,PC的韌性和耐熱性更勝一籌;相比硅酸鹽玻璃,PC的易加工性和耐沖擊性均堪稱優(yōu)良。由于PC具備如此多方面的獨特優(yōu)點,其應(yīng)用的領(lǐng)域也愈加廣泛。然而,PC材料的表面在受到機械損傷或長期暴露在紫外光條件下會老化、降解、發(fā)黃或者變成不透明[6-7]。因此,保證PC材料的表面硬度和耐候性是其能夠應(yīng)用于工業(yè)領(lǐng)域的先決條件。雖然人們可以通過化學(xué)改性的方法來增強PC材料的物理特性,但是工藝繁瑣、設(shè)備復(fù)雜、成本偏高、效果一般,不適用于大規(guī)模工業(yè)生產(chǎn)[8]。表面涂層材料的使用是現(xiàn)在國內(nèi)外普遍采用的、能夠改善PC材料性能的有效方法。涂層不但能保護底層基材的柔軟表面,還可以吸收紫外線,阻止光降解,從而延長基材的使用壽命。早期人們對PC表面涂層材料的性能研究與開發(fā),主要集中在透明性和耐久性方面,現(xiàn)在人們更多的是關(guān)注涂層的美觀性、舒適性和功能性等方面。

        1 涂層材料的功能

        1.1 硬度

        PC材料的表面硬度低,耐磨性差,限制了其應(yīng)用范圍。為了延長材料的使用壽命,擴展應(yīng)用領(lǐng)域,利用表面涂層技術(shù)對PC材料進行硬化處理就顯得尤為重要,最常用的方法是涂覆功能涂層。

        為了提高PC材料的表面硬度,通常需要較厚的涂層或者多次涂覆才能達到預(yù)期效果。傳統(tǒng)涂層由有機材料或有機-無機雜化材料組成。其中,使用溶膠-凝膠法制備的有機-無機納米雜化涂料,是保護PC材料表面最有效的方法。雜化涂料體系中無機粒子的含量、無機粒子與有機樹脂的相容性增加,都可以使涂料的機械性能也隨之升高[9-10]。納米二氧化硅(SiO2)粒子具有優(yōu)良的光學(xué)、熱學(xué)和機械性能,是涂料工業(yè)中最常用的填料。在雜化涂料體系中增加40%的納米SiO2,可使PC材料表面的鉛筆硬度由H升至5H,同時,不會影響涂層對PC基材的附著力[11]。但是,納米SiO2表面能高、易團聚、親水疏油,很難均勻分散在有機相中,限制了它的應(yīng)用。因此,對SiO2進行表面改性,在其表面形成共價鍵,引入官能團,可以有效解決以上問題。此外,Si-O-Si無機主鏈和丙烯酸酯基團的交聯(lián)程度越高,涂層的耐劃傷性越強。水、油兩相之間強大的表面張力可以使交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu)更加緊密,從而能夠有效抵抗外力的破壞。和添加未經(jīng)處理的SiO2相比,加入改性的納米SiO2填料,可使聚氨酯丙烯酸酯薄膜擁有更高的硬度和彈性模量。通過納米壓痕測試,純聚氨酯丙烯酸酯(PUA)的硬度為0.127GPa,若加入5%未經(jīng)處理的納米SiO2則變?yōu)?.238GPa,彈性模量增加了59.6%,若加入5%改性的納米SiO2則變?yōu)?.362GPa,彈性模量增加了111.7%。硅基涂料的鉛筆硬度和納米壓痕試驗結(jié)果比較如表1所示。

        表1 聚碳酸酯基材硅基涂料的鉛筆硬度和納米壓痕硬度比較

        1.2 導(dǎo)電性

        在涂料體系中摻雜碳基無機填料、金屬納米顆?;蚬曹椄叻肿拥葘?dǎo)電介質(zhì)后涂覆于PC表面,可以使PC具有導(dǎo)電性[18-20]。導(dǎo)電高分子復(fù)合材料的一個最重要的特征,就是其電導(dǎo)率隨導(dǎo)電填料粒子體積分數(shù)的增加呈非線性的遞增。當導(dǎo)電粒子的體積分數(shù)增大到某一臨界值時,其電導(dǎo)率突然增大,變化幅度可達10個數(shù)量級以上;然后,隨導(dǎo)電粒子體積分數(shù)的增加電導(dǎo)率緩慢增大,這種現(xiàn)象被稱為導(dǎo)電逾滲現(xiàn)象,相應(yīng)的導(dǎo)電粒子體積分數(shù)的臨界值稱為逾滲閾值[21]。在PC表面涂料中摻雜碳納米管(CNT),可以同時改變體系的逾滲閾值和電性能,例如,摻入體積比低于5%的CNT后,可使PC-CNT復(fù)合材料同時具有優(yōu)良的電性能和物理性能[22]。最近,人們研究發(fā)現(xiàn)摻雜2種或2種以上導(dǎo)電組分能更加有效地降低聚合物的逾滲閾值[23-29]。例如,聚乙烯二氧噻吩與聚苯乙烯磺酸鈉(PEDOT:PSS)復(fù)合物的電導(dǎo)率高、透光性好、穩(wěn)定易加工,在導(dǎo)電涂料領(lǐng)域得到了廣泛的應(yīng)用。Patole A等人將CNT和納米銀(Ag)顆粒同時摻入PEDOT:PSS體系,使涂料的電導(dǎo)率提高了大約兩個數(shù)量級[30]。需要注意的是,為了保證混合填料的電導(dǎo)率,導(dǎo)電介質(zhì)的表面之間必須有很高的結(jié)合強度。

        導(dǎo)電涂料在電子設(shè)備、平板顯示器和傳感器等領(lǐng)域有著廣泛的應(yīng)用。由于銦錫氧化物(ITO)具有電導(dǎo)率高(104μs·cm-1)和透光率高(可見光范圍內(nèi)高于90%)的特點,所以,常應(yīng)用于光學(xué)領(lǐng)域。早期人們關(guān)注的重點通常都集中在進一步提高玻璃基材上ITO薄膜的導(dǎo)電性和透光率。近些年,隨著塑料工業(yè)的發(fā)展,塑料基材以其熱膨脹系數(shù)高、熱阻率低的特點,取代了部分玻璃基材,使得ITO薄膜在其上的電導(dǎo)率比在玻璃上高出至少一個數(shù)量級。ITO薄膜可以在低溫條件下,利用激光沉積、離子束輔助蒸發(fā)或直流/射頻磁控濺射等方法涂覆于基材表面[31]。脈沖激光沉積(PLD)技術(shù)制備的ITO薄膜具有較高的電導(dǎo)率 (102~104μs·cm-1)和較高的透光率(高于85%)[32]。由離子束輔助蒸發(fā)在室溫下制備的ITO薄膜,于PC表面上測得的電導(dǎo)率為 1.7×103μs·cm-1,在 550nm 處可見光透射率高于85%[33]。使用直流/射頻磁控濺射技術(shù)制備的ITO薄膜,測試的電導(dǎo)率分別為2.5×102μs·cm-1和 1.7×103μs?cm-1[34-35]。同時,也有科學(xué)家嘗試利用化學(xué)方法制備導(dǎo)電涂層[36-38]。此外,沉積厚度和表面粗糙度也會顯著影響涂層的電導(dǎo)率。表2列舉了PC表面不同涂覆工藝制備ITO薄膜的電導(dǎo)率等參數(shù)。

        表2 涂覆在PC上的ITO薄膜的電導(dǎo)率和透光率

        1.3 抗反射性

        眾所周知,抗反射(AR)涂層可以減少塑料表面對回眩光的反射作用,例如,在車內(nèi)導(dǎo)航儀或室外設(shè)備儀表等表面涂覆AR涂層,可確保司機或有關(guān)人員能夠看清表盤信息。二氧化硅(SiO2,折射率約為1.46)、二氧化鈦(TiO2,折射率約為2.33)、氧化鋁(Al2O3,折射率約為1.65)和氟化鎂(MgF2,折射率約為1.38)是聚碳酸酯或玻璃基板表面常用的AR涂層材料。當光線在兩個折射率不同的介質(zhì)之間傳播時,會發(fā)生反射現(xiàn)象。當兩種媒介的折射率比較接近,或者基材表面蒙砂后拋光處理,可以讓基材表面的反射減少。研究發(fā)現(xiàn),人們常使用非均質(zhì)涂層或多次涂覆的方法來實現(xiàn)抗反射性[40-41],使用多次涂覆的方法制備的AR涂層不但抗反射效果明顯,還具有較高的透光性。這是因為高、低折射率材料交替涂覆,制備的無機薄膜可以產(chǎn)生干涉效應(yīng),所以該方法越來越受到人們的青睞。由于使用氣相沉積工藝制備AR涂層的設(shè)備成本較高,且生產(chǎn)效率偏低,而溶膠-凝膠法可以精確控制各組分的含量,整個成膜過程簡單,工藝條件容易控制,所以受到人們的關(guān)注和重視。AR涂層通常由2~6層薄膜組成,在特定的波長范圍內(nèi)具有高于97%的透光率和低于2.5%的反射率。非晶SiO2與結(jié)晶TiO2交替層結(jié)合,具有折射率差異大、透明度高、在可見光(450~800nm)范圍內(nèi)光譜吸收少的優(yōu)點,常作為AR材料使用[42-44]。例如,用于豐田普銳斯汽車儀表盤的SiO2/TiO2基材AR涂層的反射率甚至低于0.1%[45]。

        1.4 多功能性

        SiO2/TiO2基材AR涂層還具有自清潔、光催化和超親水功能[46-49]。光催化可以加速吸附在PC基材表面有機物質(zhì)的分解速率,同時,超親水性可以使水滴迅速擴散從而沖走污垢和其他雜質(zhì)。此外,通過紫外光照射,TiO2表面的電子空穴也可以催化分解反應(yīng),使PC基材表面更加親水。雖然TiO2的光催化活性在PC表面比在玻璃表面更高,但是,在黑暗環(huán)境中接觸角的恢復(fù)速度,玻璃表面則更勝一籌。SiO2的加入提高了親水性表面接觸角在黑暗環(huán)境中的持續(xù)時間,同時,也提高了其光催化活性[50-52]。經(jīng)過700h的紫外光照射和326h的黑暗環(huán)境放置,PC表面SiO2/TiO2涂層的接觸角會降低至5°以下[53],這是SiO2的存在使體系的酸性增加所致。表3列舉了在PC和玻璃基材上應(yīng)用的多功能涂層實例。

        表3 在透明基材上應(yīng)用的多功能涂層

        2 結(jié)論

        聚碳酸酯(PC)基材上涂層材料的最新研究主要是賦予其特定的功能,如表面硬度、導(dǎo)電性、抗反射性和自清潔性等。為了改善PC的性能,科學(xué)家們已經(jīng)開發(fā)出了多種涂層配方,如有機體系、無機體系或有機-無機混雜體系,種類豐富的涂層材料可以給PC提供不同的功能,從而進一步擴大了其商業(yè)用途和范圍。盡管科學(xué)家和工程師們經(jīng)過長期的努力與嘗試,但是,應(yīng)用于光學(xué)領(lǐng)域的涂層材料卻仍然不能滿足商業(yè)市場的要求,特別是在重負載或惡劣的環(huán)境中使用更是如此。一些性能優(yōu)異的特種涂層材料在實驗室中是可行的,但商業(yè)規(guī)模使用卻受到限制。只有建立涂層材料物理性能與其制備工藝參數(shù)之間的方程,更深入地研究材料性能與組成的關(guān)系,才能保證功能涂層大規(guī)模、長期穩(wěn)定地投入生產(chǎn)和使用。

        [1] Jang MJ, Park CK, Lee NY. Modification of Polycarbonate with Hydrophilic/Hydrophobic Coatings for the Fabrication of Microdevices[J]. Sensor Actuat B-Chem, 2014, 193: 599-607.

        [2] Zhang Y, Trinh KTL, Yoo IS, et al. One-Step Glass-Like Coating of Polycarbonate for Seamless DNA Purification and Amplification on an Integrated Monolithic Microdevice[J].Sensor Actuat B-Chem, 2014, 202: 1281-1289.

        [3] Seubert C, Nietering K, Nichols M, et al. An Overview of the Scratch Resistance of Automotive Coatings: Exterior Clearcoats and Polycarbonate Hardcoats[J]. Coatings,2017(2): 221-234.

        [4] Choi MC, Kim YK, Ha CS. Polymers for Flexible Displays:From Material Selection to Device Applications[J]. Prog Polym Sci., 2008, 33: 581-630.

        [5] Fukushima M, Higuchi K, Komori H, et al. Plastic Article for Automotive Glazing: US, 0058347[P].2012.

        [6] Diepens M, Gijsman P. Influence of Light Intensity on the Photodegradation of Bisphenol A Polycarbonate[J]. Polym Degrad Stab., 2009, 94: 34-38.

        [7] Diepens M, Gijsman P. Photodegradation of Bisphenol A Polycarbonate[J]. Polym Degrad Stab., 2007, 92: 397-406.

        [8] Hauenstein O, Reiter M, Agarwal S. Bio-based Polycarbonate from Limonene Oxide and CO2with High Molecular Weight, Excellent Thermal Resistance, Hardness and Transparency[J]. Green Chem., 2016, 18: 760-770.

        [9] Lahijania YZK, Mohseni M, Bastani S. Characterization of Mechanical Behavior of UV Cured Urethane Acrylate Nanocomposite Films Loaded with Silane Treated Nanosilica by the Aid of Nanoindentation and Nanoscratch Experiments[J]. Tribol Int., 2014, 69: 10-18.

        [10] Zhang H, Zhang H, Tang L, et al. Wear-Resistant and Transparent Acrylate-based Coating with Highly Filled Nanosilica Particles[J]. Tribol Int., 2010, 43: 83-91.

        [11] Zhang H, Zhang H, Tang L, et al. Wear-Resistant and Transparent Acrylate-based Coating with Highly Filled Nanosilica Particles[J]. Tribol Int., 2010, 43: 83-91.

        [12] Zhang L, Zeng Z, Yang J, et al. Characterization and Properties of UV-Curable Polyurethane-Acrylate/Silica Hybrid Materials Prepared by the Sol-Gel Process[J]. Polym Int.,2004, 53: 1431-1435.

        [13] Wu LYL, Chwa E, Chen Z, et al. A Study Towards Improving Mechanical Properties of Sol-Gel Coatings for Polycarbonate[J]. Thin Solid Films, 2008, 516: 1056-1062.[14] Jin SB, Lee JS, Choi YS, et al. High-Rate Deposition and Mechanical Properties of SiOx Film at Low Temperature by Plasma Enhanced Chemical Vapor Deposition with the Dual Frequencies Ultra High Frequency and High Frequency[J]. Thin Solid Films, 2011, 519: 6334-6338.

        [15] Muir BW, Thissen H, Simon GP, et al. Factors Affecting the Adhesion of Microwave Plasma Deposited Siloxane Films on Polycarbonate[J]. Thin Solid Films, 2006, 500: 34-40.

        [16] Lin YS, Weng MS, Chung TW, et al. Enhanced Surface Hardness of Flexible Polycarbonate Substrates Using Plasma-Polymerized Organosilicon Oxynitride Films by Air Plasma Jet under Atmospheric Pressure[J]. Surf Coat Technol., 2011, 205: 3856-3864.

        [17] Soloukhin VA, Posthumus W, Brokken-Zijp JCM, et al.Mechanical Properties of Silica-(Meth)acrylate Hybrid Coatings on Polycarbonate Substrate[J]. Polymer, 2002, 43:6169-6181.

        [18] Yoonessi M, Gaier JR. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites[J]. ACS Nano,2010(4): 7211-7220.

        [19] Kim HW, Macosko CW. Processing-Property Relationships of Polycarbonate/Graphene Composites[J]. Polymer, 2009,50: 3797-3809.

        [20] Bauhofer W, Kovacs JZ. A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites[J]. Compos Sci Technol, 2009, 69: 1486-1498.[21] 梁基照,楊銓銓.導(dǎo)電高分子復(fù)合材料逾滲閾值的預(yù)測[J].華南理工大學(xué)學(xué)報(自然科學(xué)版),2007(8):80-82.

        [22] Bauhofer W, Kovacs JZ. A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites[J]. Compos Sci Technol., 2009, 69: 1486-1498.[23] Patole A, Lubineau G. Carbon Nanotubes with Silver Nanoparticle Decoration and Conductive Polymer Coating for Improving the Electrical Conductivity of Polycarbonate Composites[J]. Carbon, 2015, 81: 720-730.

        [24] Zhou J, Lubineau G. Improving Electrical Conductivity in Polycarbonate Nanocomposites Using Highly Conductive PEDOT:PSS Coated MWCNTs[J]. ACS Appl Mater Inter,2013(5): 6189-6200.

        [25] Kyrylyuk A, Hermant M, Schilling T, et al. Controlling Electrical Percolation in Multicomponent Carbon Nanotube Dispersions[J]. Nat Nanotechnol, 2011(6): 364-369.

        [26] Hong KP, Kim SH, Yang CW, et al. Photopatternable Poly(4-styrene sulfonicacid)-Wrapped MWNT Thin-Film Source/Drain Electrodes for Use in Organic Field-Effect Transistors[J]. ACS Appl Mater Inter, 2011(3): 74-79.

        [27] Hermant MC, Schoot P, Klumperman B, et al. Probing the Cooperative Nature of the Conductive Components in Polystyrene/Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate)-Single-Walled Carbon Nanotube Composites[J].ACS Nano, 2010(4): 2242-2248.

        [28] Kim DSRY, Kim YS, Choi KW, et al. Improved Thermoelectric Behavior of Nanotube-filled Polymer Composites with Poly(3,4-ethylenedioxythiophene)Poly(styrenesulfonate)[J]. ACS Nano, 2010(4): 513-523.

        [29] Hermant M, Klumperman B, Kyrylyuk A, et al. Lowering the Percolation Threshold of Single-Walled Carbon Nanotubes Using Polystyrene/Poly(3,4-ethylenedioxythioph ene):Poly(styrene sulfonate) Blends[J]. Soft Matter, 2009(5):878-885.

        [30] Patole A, Lubineau G. Carbon Nanotubes with Silver Nanoparticle Decoration and Conductive Polymer Coating for Improving the Electrical Conductivity of Polycarbonate Composites[J]. Carbon, 2015, 81: 720-730.

        [31] Amoli HS, Shokatian S, Abdous, M. Thermal Annealing Combination with Pulse Nd-YAG Laser Treatment of ITO on Polycarbonate Using Spin Coating Process[J]. J Sol-Gel Sci Technol., 2012, 62: 319-323.

        [32] Yong TK, Tou TY, Teo BS. Pulsed Laser Deposition of Tin-Doped Indium Oxide (ITO) on Polycarbonate[J]. Appl Surf Sci., 2005, 214: 388-391.

        [33] Kim JS, Bae JW, Kim HJ, et al. Effects of Oxygen Radical on the Properties of Indium Tin Oxide Thin Films Deposited at Room Temperature by Oxygen Ion Beam Assisted Evaporation[J]. Thin Solid Films, 2000, 377: 103-108.

        [34] Wu WF, Chiou BS. Deposition of Indium Tin Oxide Films on Polycarbonate Substrates by Radio-Frequency Magnetron Sputtering[J]. Thin Solid Films, 1997, 298: 221-227.

        [35] Minami T, Sonohara H, Kakumu T, et al. Physics of Very Thin ITO Conducting Films with High Transparency Prepared by DC Magnetron Sputtering[J]. Thin Solid Films,1995, 270: 37-42.

        [36] Asakuma N, Fukui T, Toki M. Low-Temperature Synthesis of ITO Thin Films Using an Ultraviolet Laser for Conductive Coating on Organic Polymer Substrates[J]. J Sol-Gel Sci Technol, 2003, 27: 91-95.

        [37] Aegerter MA, Al-Dahoudi N. Wet-Chemical Processing of Transparent and Antiglare Conducting ITO Coating on Plastic Substrates[J]. J Sol-Gel Sci Technol., 2003, 27: 81-89.

        [38] Al-Dahoudi N, Aegerter MA. Wet Coating Deposition of ITO Coatings on Plastic Substrates[J]. J Sol-Gel Sci Technol., 2003, 26: 693-697.

        [39] Kim DI, KIM SJ. AFM Observation of ITO Thin Films Deposited on Polycarbonate Substrates by Sputter Type Negative Metal Ion Source[J]. Surf Coat Technol., 2003,176: 23-29.

        [40] Schubert MF, Mont FW, Chhajed S, et al. Design of Multilayer Antireflection Coatings Made from Co-Sputtered and Low-Refractive-Index Materials by Genetic Algorithm[J]. Opt Express, 2008, 16: 5290-5298.

        [41] Schulz U. Review of Modern Techniques to Generate Antireflective Properties on Thermoplastic Polymers[J].Appl Optics., 2006, 45: 1608-1618.

        [42] Mazur M, Wojcieszak D, Kaczmarek D, et al. Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2and SiO2[J]. Appl Surf Sci., 2016, 380: 165-171.

        [43] Li D, Wan D, Zhu X, et al. Broadband Antireflection TiO2-SiO2Stack Coatings with Refractive-Index-Grade Structure and Their Applications to Cu(In, Ga)Se2Solar Cells[J]. Sol Energy Mater Sol Cells, 2014, 130: 505-512.

        [44] Mazur M, Wojcieszak D, Domarazki J, et al. TiO2/SiO2Multilayer as an Antireflective and Protective Coating Deposited by Microwave Assisted Magnetron Sputtering[J].Opto-Electron Rev., 2013, 21: 233-238.

        [45] Chen D, Yan Y, Westernberg E, et al. Development of Anti-Reflection(AR) Coating on Plastic Panels for Display Applications[J]. J Sol-Gel Sci Technol., 2000, 19: 77-82.

        [46] Weng KW, Huang YP. Preparation of TiO2Thin Films on Glass Surfaces with Self-Cleaning Characteristics for Solar Concentrators[J]. Surf Coat Technol., 2013, 231: 201-204.

        [47] Lai Y, Tang Y, Gong J, et al. Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-Fogging[J]. J Mater Chem., 2012, 22: 7420-7426.[48] Xi B, Verma LK, Li J, et al. TiO2Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications[J]. ACS Appl Mater Inter., 2012, 4: 1093-1102.

        [49] Euvananont C, Junin C, Inpor K, et al. TiO2Optical Coating Layers for Self-Cleaning Applications[J]. Ceram Int., 2008,34: 1067-1071.

        [50] Latthe S, Liu S, Terashima C, et al. Transparent, Adherent,and Photocatalytic SiO2-TiO2Coatings on Polycarbonate for Self-Cleaning Applications[J]. Coatings, 2014(4): 497-507.

        [51] Fateh R, Dillert R, Bahnemann D. Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2Thin Films on Polycarbonate[J]. Langmuir, 2013,29: 3730-3739.

        [52] Kesmez O, Erdem H, Burunkaya E, et al. Sol-Gel Preparation and Characterization of Anti-Reflective and Self-Cleaning SiO2-TiO2Double-Layer Nanometric Films[J]. Sol Energy Mater Sol Cells, 2009, 93: 1833-1839.

        [53] Liu Z, Zhang X, Murakami T, et al. Sol-Gel TiO2/SiO2Bilayer Films with Self-Cleaning and Antireflection Properties[J]. Sol Energy Mater Sol Cells, 2008, 92: 1434-1438.

        [54] Li H, Jiang M, Hu D, et al. Solvent-Free Zirconia Nanofluid/Silica Single-Layer Multifunctional Hybrid Coatings[J]. Colloid Surface A, 2015, 464: 26-32.

        [55] Wouters MEL, Wolfs DP, Linde MC, et al. Transparent UV Curable Antistatic Hybrid Coatings on Polycarbonate Prepared by the Sol-Gel Method[J]. Prog Org Coat, 2004,51: 312-320.

        [56] Prado R, Beobide G, Marcaide A, et al. Development of Multifunctional Sol-Gel Coatings: Anti-Reflection Coatings with Enhanced Self-Cleaning Capacity[J]. Sol Energy Mater Sol Cells, 2010, 94: 1081-1088.

        [57] Kuhr M, Bauer S, Rothhaar U, et al. Coatings on Plastics with the PICVD Technology[J]. Thin Solid Films, 2003,442: 107-116.

        [58] Zhao X, Zhao Q, Yu J, et al. Development of Multifunctional Photoactive Self-Cleaning Glasses[J]. J Non-Cryst Solids,2008, 354: 1424-1430.

        [59] Okada M, Yamada Y, Jin P, et al. Fabrication of Multifunctional Coating Which Combines Low-E Property and Visible-Light-Responsive Photocatalytic Activity[J]. Thin Solid Films, 2003,442: 217-221.

        Abstract:As an excellent engineering plastic, polycarbonate(PC) was recognized as a promising alternative for traditional inorganic glass(silicate glass) and organic glass(polymethyl methacrylate) because of high optical transparency, light weight and excellent toughness. However, PC showed the intrinsic drawbacks of low hardness, easily scratched, poor UV resistance, which limited its applications in the area of outdoor environments. Therefore, the surface modi fi cation of PC become the most effective way to overcome and improve its shortcomings. With the development of optical equipment, new energy vehicles, aerospace and other fi elds, the market put forward high requirements on the electrical conductivity, antire fl ection and self-cleaning performance of PC,so that the use of surface coatings materials was an effective means to realize these requirements. This article reviewed the physical properties and recent progress of surface coating materials used for PC.

        Key words:polycarbonate; hardness; electrical conductivity; antire fl ection

        Research Progress of Surface Coating Materials for Polycarbonate

        SHU Hang
        (School of Chemical Engineering, Henan Vocational College of Applied Technology, Zhengzhou 450042, China)

        TQ 050.4+25

        A

        1671-9905(2017)09-0036-06

        舒航(1986-),男,碩士,助教,現(xiàn)主要從事功能高分子合成及應(yīng)用等研究工作。E-mail:shuhang860911@163.com

        2017-05-19

        猜你喜歡
        涂覆基材導(dǎo)電
        為航空航天領(lǐng)域提供高端基材
        建筑表皮中超薄基材的應(yīng)用分析
        低溫球形顆粒表面噴霧冷凍涂覆液膜的生長規(guī)律
        分形粗糙表面涂覆目標太赫茲散射特性
        KD383:物流防盜印刷袋
        一種鎂合金基材單向移動表面處理設(shè)備
        TiO2/PPy復(fù)合導(dǎo)電微球的制備
        CPS導(dǎo)電回路電動斥力的仿真計算
        微通道下費托合成催化劑層涂覆厚度的數(shù)值研究
        化工進展(2015年3期)2015-11-11 09:17:26
        人體導(dǎo)電與低壓觸電演示儀
        国产精品一区二区三区蜜臀| 精品日产卡一卡二卡国色天香 | 日本女优中文字幕看片| 伊人狼人影院在线视频| 久久天堂精品一区二区三区四区| 肉体裸交137日本大胆摄影| 亚洲成aⅴ人在线观看| 久久久亚洲欧洲日产国码是AV| 不卡视频在线观看网站| 日本熟日本熟妇中文在线观看| 天天干成人网| 成人国产乱对白在线观看| 亚洲乱码一区二区av高潮偷拍的| 久久只精品99品免费久23| 日韩精品成人一区二区三区| 国产好片日本一区二区三区四区 | 欧美性xxxxx极品老少| 老熟妻内射精品一区| 久久熟女五十路| 日本老熟妇五十路一区二区三区| 亚洲av成人片色在线观看高潮| 在线观看国产精品日韩av| 午夜无码片在线观看影院y| 日韩精品免费在线视频一区| 色诱视频在线观看| 欧美自拍视频在线| 亚洲一区二区三区久久久| 好大好爽我要高潮在线观看| 欧美黑人又粗又硬xxxxx喷水| 亚洲天堂av免费在线看| 国产一区二区中文字幕在线观看| 日本最新免费二区三区| a级毛片免费观看视频| 亚洲视频在线视频在线视频| 亚洲丁香婷婷久久一区二区| 亚洲欧美另类激情综合区| 精品久久久久久国产潘金莲| 国产一区二区三区在线观看第八页| 免费人成视频xvideos入口| 亚洲AV成人无码久久精品四虎| 女同亚洲一区二区三区精品久久|