張帥,石穎,時(shí)佳,孫敏,吳倩,劉新風(fēng)*,劉玫,3*
(1.山東師范大學(xué)物理與電子科學(xué)學(xué)院,山東 濟(jì)南 250014;2.國(guó)家納米科學(xué)中心中科院納米科學(xué)卓越創(chuàng)新中心納米標(biāo)準(zhǔn)與檢測(cè)重點(diǎn)實(shí)驗(yàn)室,北京 100190;3.山東師范大學(xué)材料與清潔能源研究院,山東 濟(jì)南 250014)
【新材料】
基于拉曼光譜和光學(xué)二次諧波的二硒化錫結(jié)構(gòu)研究
張帥1,2,石穎1,時(shí)佳2,孫敏1,吳倩1,劉新風(fēng)2*,劉玫1,3*
(1.山東師范大學(xué)物理與電子科學(xué)學(xué)院,山東 濟(jì)南 250014;2.國(guó)家納米科學(xué)中心中科院納米科學(xué)卓越創(chuàng)新中心納米標(biāo)準(zhǔn)與檢測(cè)重點(diǎn)實(shí)驗(yàn)室,北京 100190;3.山東師范大學(xué)材料與清潔能源研究院,山東 濟(jì)南 250014)
二維層狀半導(dǎo)體材料,尤其是少數(shù)原子層時(shí),其光電性質(zhì)與晶格結(jié)構(gòu)密切相關(guān),采用合適的表征方法是關(guān)鍵。本文通過(guò)使用機(jī)械剝離的方法,得到了不同層數(shù)的二硒化錫,并利用光學(xué)二次諧波和拉曼光譜的表征研究了其晶體結(jié)構(gòu)的性質(zhì)。通過(guò)二次諧波準(zhǔn)確確定了二硒化錫的晶軸,分析了厚度對(duì)二次諧波的影響,為確定材料的晶格結(jié)構(gòu)提供了一種純光學(xué)的手段,同時(shí)為發(fā)現(xiàn)二硒化錫其他非線性光學(xué)性質(zhì)提供了可能性。通過(guò)拉曼光譜,發(fā)現(xiàn)二硒化錫層間振動(dòng)模式對(duì)厚度和溫度變化均較為敏感,表明二硒化錫可應(yīng)用于大范圍內(nèi)溫度的原位監(jiān)測(cè)。
二硒化錫;二次諧波;拉曼光譜;晶格結(jié)構(gòu)
二硒化錫(SnSe2)作為一種IV-VI族半導(dǎo)體材料,具有和MoS2類(lèi)似的結(jié)構(gòu),每一層錫原子被兩層硒原子夾在中間,構(gòu)成一個(gè)穩(wěn)定的“Se-Sn-Se”結(jié)構(gòu)層[12],這種結(jié)構(gòu)層間通過(guò)弱的范德瓦耳斯相互作用耦合, 圖1左側(cè)為單層二硒化錫俯視示意圖,右側(cè)為兩層二硒化錫側(cè)視示意圖,其中層間間距為0.62 nm,圖中實(shí)心小球代表錫原子,空心小球代表硒原子(后同)。類(lèi)似于其他二維材料,不同層數(shù)的SnSe2可通過(guò)對(duì)其塊體進(jìn)行機(jī)械剝離得到。二硒化錫晶體結(jié)構(gòu)通常為2H相[13],具有D6h點(diǎn)群對(duì)稱(chēng)性;另外存在1T相,表現(xiàn)為D3d點(diǎn)群對(duì)稱(chēng)性,這里的1、2是指每個(gè)晶胞所包含的層數(shù)。Zhou等[13]利用雙層1T相的SnSe2設(shè)計(jì)的光電探測(cè)器[14]所得到的光電響應(yīng)時(shí)間達(dá)到了約2 ms,這是響應(yīng)時(shí)間最快的二維光電探測(cè)器之一,這不僅遠(yuǎn)快于MoS2、GaS等光電材料,也快于2H相的SnSe2材料(14.5 ms)。這再次說(shuō)明晶格結(jié)構(gòu)及取向?qū)訝畎雽?dǎo)體材料,特別是少層材料的光電性能有著重要影響。為此我們通過(guò)機(jī)械剝離塊體樣品的方法得到不同層數(shù)的二硒化錫納米薄片,并利用拉曼光譜和光學(xué)二次諧波對(duì)其晶格結(jié)構(gòu)進(jìn)行研究。
圖1 二硒化錫(SnSe2)2H相結(jié)構(gòu)示意圖Fig.1 Structural model of 2H type tin diselenide(SnSe2)
1.1 樣品制備
SnSe2納米薄片通過(guò)機(jī)械剝離的方法得到。SnSe2晶粒粘在思高膠帶上,然后帶有晶體的那面膠帶輕輕折向同一膠帶潔凈的一端,這兩面膠帶牢牢地按在一起保持幾秒鐘,然后膠帶輕輕地展開(kāi)確保被剝離的晶粒仍粘在相對(duì)的兩面膠帶上,這個(gè)過(guò)程重復(fù)十幾次使得兩面膠帶均鋪滿(mǎn)剝離的樣品。Si/SiO2襯底依次用丙酮、酒精、去離子水清洗5 min,最后用氧等離子體處理1 min。將剝離完成的膠帶粘在Si/SiO2光滑的一面,然后用潔凈布輕輕檫拭膠帶表面10 min。最后,將膠帶沿一個(gè)方向取下,SnSe2納米薄片就轉(zhuǎn)移到硅襯底上。
圖2a給出的是機(jī)械剝離得到的SnSe2不同厚度的樣品,圓圈標(biāo)記處為變溫拉曼光譜選取的位置。圖2b為對(duì)圖2a局部(虛線框內(nèi))的原子力顯微鏡圖像,圖中越明亮的區(qū)域表示樣品越厚。圖2c為圖2b中劃線經(jīng)過(guò)區(qū)域的厚度表征,從圖中可以發(fā)現(xiàn)最薄區(qū)域厚度約為6 nm。
圖2 機(jī)械剝離得到的SnSe2 形貌及AFM圖像Fig.2 Morphology and AFM image of mechanical exfoliated SnSe2
1.2 拉曼光譜測(cè)量
拉曼光譜通過(guò)inVia拉曼光譜儀(英國(guó)雷尼紹公司)測(cè)得,激發(fā)波長(zhǎng)為514 nm,激發(fā)功率為20 mW,100倍物鏡聚焦,采用Swift模式,曝光時(shí)間為10 s。變溫拉曼通過(guò)在載物臺(tái)加載一低溫臺(tái)得到,由控制器通過(guò)液氮制冷,50倍長(zhǎng)焦物鏡聚焦,其余測(cè)量條件不變。
1.3 二次諧波(SHG)測(cè)量
圖3是二次諧波實(shí)驗(yàn)的光路示意圖。入射激光采用Mira 900D飛秒激光器(美國(guó)相干公司)產(chǎn)生的脈沖激光(輸出波長(zhǎng)780 nm,重復(fù)頻率76 MHz)。激光首先通過(guò)一個(gè)可調(diào)衰減片用于調(diào)節(jié)激光功率,經(jīng)過(guò)一系列光學(xué)鏡組最后被顯微鏡鏡頭(100 倍)在樣品上聚焦為直徑2 μm(半高寬)的光斑。二次諧波利用同一鏡頭采集并最終采集到影像光譜儀,在光譜儀前面有一650 nm低通濾波片用于濾掉激光,最后二次諧波信號(hào)利用光纖收集到光譜儀。對(duì)于角度依賴(lài)的二次諧波,需要在顯微鏡前面加一偏振片,以確保入射激光為良好的線偏光,同時(shí)在光譜儀前面也加一偏振片,偏振方向與入射偏振方向一致,用于監(jiān)測(cè)二次諧波沿特定方向偏振的強(qiáng)度。
圖3 光學(xué)二次諧波光路示意圖Fig.3 Set-up diagram of the optical SHG
二次諧波是一種二階非線性光學(xué)效應(yīng),在強(qiáng)電場(chǎng)作用下,極化強(qiáng)度與電場(chǎng)關(guān)系不再是線性關(guān)系,電極化率為一張量。如果電極化率是三階張量,對(duì)于入射頻率為ω的光,會(huì)產(chǎn)生頻率為2ω的倍頻光,表示為[15-16]
(1)
二次諧波的另一特點(diǎn)是倍頻光的強(qiáng)度與激發(fā)光強(qiáng)度的二次方成正比,即[15-16]
(2)
這里ISHG、E(2ω)、P(ω)依次為二次諧波的強(qiáng)度、電場(chǎng)矢量和激發(fā)能量。為此,我們對(duì)圖4aAFM圖像上位置3處的二次諧波在不同入射激光功率下的強(qiáng)度進(jìn)行了測(cè)量(圖4d)。為方便擬合,我們對(duì)橫軸和縱軸數(shù)據(jù)均取對(duì)數(shù)坐標(biāo)[17],結(jié)果為線性關(guān)系,斜率約為1.84,略小于2,因?yàn)樵谳^高能量下二次諧波吸收引起局部加熱導(dǎo)致的相位失配[18]或者是三光子吸收過(guò)程等其他非線性光學(xué)損耗[19],導(dǎo)致二次諧波強(qiáng)度比理論預(yù)計(jì)的略小。我們又對(duì)不同厚度SnSe2的二次諧波進(jìn)行測(cè)量,圖4b為圖4a各標(biāo)記位置處的二次諧波;圖4c為各位置處二次諧波強(qiáng)度與樣品厚度的關(guān)系,其數(shù)據(jù)點(diǎn)用e指數(shù)函數(shù)擬合y=A·exp(-x/τ)+y0,這里x為樣品厚度,y為二次諧波的強(qiáng)度,τ定義為二次諧波的衰減常數(shù),表征強(qiáng)度衰減的快慢。由圖4c可以看出,隨著樣品厚度增加,直到塊體形態(tài),SHG強(qiáng)度不斷減弱,整體呈現(xiàn)e指數(shù)衰減的趨勢(shì)[3]。對(duì)于2H相SnSe2,單層SnSe2為非中心對(duì)稱(chēng)(D3h點(diǎn)群),隨著厚度增加,每層的硒原子和錫原子交替堆疊,提高了整體的對(duì)稱(chēng)性(D6h點(diǎn)群),因而二次諧波信號(hào)不斷減弱,在這次實(shí)驗(yàn)里,當(dāng)樣品厚度達(dá)到55.45 nm(位置7)時(shí),二次諧波信號(hào)已經(jīng)很弱,幾乎被噪聲湮沒(méi),表明塊體的二硒化錫表現(xiàn)為中心對(duì)稱(chēng)的結(jié)構(gòu)[20]。
圖4 SnSe2的二次諧波隨厚度和功率的關(guān)系Fig.4 The curves of SHG from SnSe2with different thickness and power
圖5 角度依賴(lài)的SHG測(cè)量Fig.5 Angular dependent measurement of SHG
E(2ω)=Aχ(2)cos[3(Φ+Φ0)],
(3)
二次諧波的強(qiáng)度可由公式(3)得到
I2ω∝cos2[3(Φ+Φ0)],
(4)
其中,Φ0是初始的晶體晶軸方向。當(dāng)入射偏振和采集端偏振方向垂直時(shí),二次諧波電場(chǎng)強(qiáng)度與sin[3(Φ+Φ0)]成正比,如果不在采集端加偏振片SHG強(qiáng)度就會(huì)是一個(gè)與角度無(wú)關(guān)的常數(shù)[21-22]。利用上述I2ω的公式對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行擬合(圖5b),擬合結(jié)果得到Φ0≈-9.8°,表明“扶手椅”方向開(kāi)始時(shí)沿激光偏振方向偏離了9.8°,這樣通過(guò)角度依賴(lài)的二次諧波就可以準(zhǔn)確確定SnSe2的晶格結(jié)構(gòu)和晶軸方向。
圖6 SnSe2不同厚度SnSe2的拉曼光譜Fig.6 Thickness dependent Raman spectra of SnSe2
作為一種振動(dòng)光譜,拉曼光譜可以反映晶格結(jié)構(gòu)和晶格振動(dòng),是一種分析二維材料結(jié)構(gòu)的有效方法。此前報(bào)道的塊體材料的SnSe2拉曼光譜存在兩種振動(dòng)模式,一種是平面內(nèi)的振動(dòng)A1g,另一種是平面外的振動(dòng)Eg[13,23-24]。圖 6給出了不同厚度SnSe2的拉曼光譜和相應(yīng)位置的光學(xué)照片,其中Eg振動(dòng)模式對(duì)應(yīng)拉曼光譜圖中約109 cm-1的拉曼峰,A1g振動(dòng)模式對(duì)應(yīng)圖6b中約184 cm-1的拉曼峰。根據(jù)圖2光學(xué)照片和相應(yīng)AFM表征可以判斷位置由1到4,樣品的厚度不斷增加。從圖6b可以看出,隨著樣品厚度的增加,A1g振動(dòng)模式和Eg振動(dòng)模式的強(qiáng)度均增加,這是由于隨著SnSe2層數(shù)的增加,相應(yīng)的散射中心的數(shù)量也在增加[25]。同時(shí)還能發(fā)現(xiàn)當(dāng)厚度增加時(shí)Eg模式的峰位出現(xiàn)藍(lán)移,由109.507 cm-1移動(dòng)至111.282 cm-1,但并沒(méi)有測(cè)到A1g拉曼峰位的改變,我們推斷層數(shù)的增加改變了平面間晶格的相互作用,從而影響到平面間振動(dòng)模式的變化,對(duì)平面內(nèi)的振動(dòng)并沒(méi)有明顯影響。
圖7 二硒化錫的溫度依賴(lài)?yán)庾VFig.7 Temperature dependent Raman spectra of SnSe2
溫度依賴(lài)的拉曼光譜可用于研究二維材料的導(dǎo)熱率、熱膨脹以及原子鍵等相關(guān)性質(zhì)[26-27]。為研究SnSe2晶格特征隨溫度的變化,我們又對(duì)特定厚度的樣品進(jìn)行了變溫的拉曼測(cè)量,采集區(qū)域?yàn)閳D2a中標(biāo)記處,圖7a給出了二硒化錫從298 K到83 K的變溫拉曼光譜。分別從298 K的拉曼各特征峰向下作垂線,可看出隨著溫度的降低,各拉曼特征峰均出現(xiàn)藍(lán)移。作為對(duì)照,我們也給出了硅襯底隨溫度變化的曲線(520 cm-1附近),其變化趨勢(shì)與其他文獻(xiàn)符合[28]。拉曼峰位隨溫度的變化受晶格勢(shì)能中非簡(jiǎn)諧項(xiàng)常數(shù)、聲子占有數(shù)以及晶格熱膨脹等的影響[26,29]。聲子頻率可表示為如下表達(dá)式[26]
(5)
其中,γ和κ分別為體積熱膨脹吸收和等溫體積壓縮系數(shù),右邊第一項(xiàng)為溫度為常量時(shí)的體積對(duì)聲子頻率的影響,第二項(xiàng)為體積不變時(shí)溫度對(duì)聲子頻率的貢獻(xiàn),因此非簡(jiǎn)諧項(xiàng)常數(shù)(由溫度決定)可由聲子頻率對(duì)等壓溫度、等溫壓力的導(dǎo)數(shù)γ和κ的值決定。
本文主要研究了層狀半導(dǎo)體材料二硒化錫的二次諧波和拉曼光譜。通過(guò)二次諧波我們可以確定二硒化錫的晶軸取向,同時(shí)還可以由二次諧波的強(qiáng)度間接反映樣品的層數(shù),相比透射電鏡、原子力顯微鏡等可能對(duì)樣品的破壞,二次諧波作為一種無(wú)損檢測(cè)的途徑,確定材料的晶格結(jié)構(gòu)有其優(yōu)勢(shì)。同時(shí)通過(guò)研究拉曼光譜,我們對(duì)兩種振動(dòng)模式A1g、Eg進(jìn)行了測(cè)量和分析,發(fā)現(xiàn)相比層內(nèi)振動(dòng)模式,層間振動(dòng)模式Eg對(duì)原子層數(shù),溫度變化更為敏感,同時(shí)我們發(fā)現(xiàn)得到的SnSe2拉曼振動(dòng)模式隨溫度有一線性變化,其一階溫度系數(shù)達(dá)到-0.014 22 cm-1/K,這表明SnSe2可應(yīng)用于溫度的原位監(jiān)測(cè)。
[1]WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature nanotechnology, 2012, 7(11): 699-712.
[2]ZENG H, DAI J, YAO W, et al. Valley polarization in MoS2monolayers by optical pumping[J]. Nature nanotechnology, 2012, 7(8): 490-493.
[3]LI Y, RAO Y, MAK K F, et al. Probing symmetry properties of few-layer MoS2and h-BN by optical second-harmonic generation[J]. Nano Letters, 2013, 13(7): 3329-3333.
[4]HSU W T, ZHAO Z A, LI L J, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers[J]. ACS Nano, 2014, 8(3): 2951-2958.
[5]YANG S, LI Y, WANG X, et al. High performance few-layer GaS photodetector and its unique photo-response in different gas environments[J]. Nanoscale, 2014, 6(5): 2582-2587.
[6]ZHOU Y, NIE Y, LIU Y, et al. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets[J]. ACS Nano, 2014, 8(2): 1485-1490.
[7]TAMALAMPUDI S R, LU Y Y, KUMAR U R, et al. High performance and bendable few-layered InSe photodetectors with broad spectral response[J]. Nano Letters, 2014, 14(5): 2800-2806.
[8]JACOBS-GEDRIM R B, SHANMUGAM M, JAIN N, et al. Extraordinary photoresponse in two-dimensional In2Se3Nanosheets[J]. ACS Nano, 2014, 8(1): 514-521.
[9]KANG I, WISE F W. Electronic structure and optical properties of PbS and PbSe quantum dots[J]. J Opt Soc Am B, 1997, 14(7): 1632-1646.
[10]MALONE B D, KAXIRAS E. Quasiparticle band structures and interface physics of SnS and GeS[J]. Physical Review B, 2013, 87(24): 245-312.
[11]XUE D J, TAN J, HU J S, et al. Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet[J]. Advanced Materials, 2012, 24(33): 4528-4533.
[12]HUANG Y, CHEN X, ZHOU D, et al. Stabilities, electronic and optical properties of SnSe2(1- x )S2 xalloys: A first-principles study[J]. The Journal of Physical Chemistry C, 2016, 120(10): 5839-5847.
[13]ZHOU X, GAN L, TIAN W, et al. Ultrathin SnSe2flakes grown by chemical vapor deposition for high-performance photodetectors[J]. Advanced Materials, 2015, 27(48): 8035-8041.
[14]YU P, YU X, LU W, et al. Fast photoresponse from 1T tin diselenide atomic layers[J]. Advanced Functional Materials, 2016, 26(1): 137-145.
[15]BOYDR W. Nonlinear Optics [M]. London: Academic Press, 2008: 69-79.
[16]SHENY R. The principles of nonlinear optics [M]. New Jersey: John Wiley and Sons Inc,2003: 16-29.
[17]ZHOU X, CHENG J, ZHOU Y, et al. Strong second-harmonic generation in atomic layered GaSe[J]. Journal of the American Chemical Society, 2015, 137(25): 7994-7997.
[18]HANSEN A K, TAWFIEQ M, JENSEN O B,et al. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals[J]. Optics express, 2015, 23(12): 15921-15934.
[19]CAZZANELLI M, BIANCO F, BORGA E, et al. Second-harmonic generation in silicon waveguides strained by silicon nitride[J]. Nature materials, 2012, 11(2): 148-154.
[20]MALARD L M, ALENCAR T V, BARBOZA A P M, et al. Observation of intense second harmonic generation from MoS2atomic crystals[J]. Physical Review B, 2013, 87(20): 201401.
[21]KIM C-J, BROWN L, GRAHAM M W, et al. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers[J]. Nano letters, 2013, 13(11): 5660-5665.
[22]KUMAR N, NAJMAEI S, CUI Q, et al. Second harmonic microscopy of monolayer MoS2[J]. Physical Review B, 2013, 87(16): 161403.
[23]HUANG Y, XU K, WANG Z, et al. Designing the shape evolution of SnSe2nanosheets and their optoelectronic properties[J]. Nanoscale, 2015, 7(41): 17375-17380.
[24]HUANG L, YU Y, LI C, et al. Substrate mediation in vapor deposition growth of layered chalcogenide nanoplates: A case study of SnSe2[J]. The Journal of Physical Chemistry C, 2013, 117(12): 6469-6475.
[25]XIA J, LI X Z, HUANG X, et al. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses[J]. Nanoscale, 2016, 8(4): 2063-2070.
[26]YAN R, SIMPSON J R, BERTOLAZZI S, et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent raman spectroscopy[J]. ACS Nano, 2014, 8(1): 986-993.
[27]FREITAG M, STEINER M, MARTIN Y, et al. Energy dissipation in graphene field-effect transistors[J]. Nano Letters, 2009, 9(5): 1883-1888.
[28]WU X L, XIONG S J, SUN L T, et al. Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons[J]. Small, 2009, 5(24): 2823-2826.
[29]CALIZO I, BALANDIN AA, BAO W, et al. Temperature dependence of the Raman spectra of graphene and graphene multilayers[J]. Nano Letters, 2007, 7(9): 2645-2649.
[30]ZHANG S, YANG J, XU R, et al. Extraordinary photoluminescence and strong temperature/angle-dependent raman responses in few-layer phosphorene[J]. ACS Nano, 2014, 8(9): 9590-9596.
[31]THRIPURANTHAKA M, KASHID R V, SEKHAR R, et al. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2and WS2nanosheets[J]. Applied Physics Letters, 2014, 104(8):081911.
Structural studieson Raman spectroscopy and optical second harmonic generation based tin diselenide
ZHANG Shuai1,2, SHI Ying1, SHI Jia2, SUN Min1,WU Qian1,LIU Xin-feng2*, LIU Mei1,3*
(1. School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; 3. Institute of Materials and Clean Energy, Shandong Normal University, Jinan, 250014, China)
∶The photoelectric properties of two-dimensional layered semiconductor materials, especially for those with a few atomic layers, are closely related to their crystal structures. Thus, the critical question is to select the proper characterization. In this article, the tin diselenide with different layers has been obtained by means of mechanical exfoliation, and the characteristics of the crystal structure have been studied by optical second harmonic generation and Raman spectrum. By using second harmonic generation, the crystal axis of tin diselenide was confirmed accurately and the effect of different thickness on second harmonic generation was analyzed, providing a purely optical method of determining the orientation of crystallographic axes, as well as offering the possibility to discover other nonlinear optical properties of tin diselenide. By Raman spectroscopy, it is found that the interlayer vibration mode was sensitive to the changes of thickness and temperature, thus tin diselenide could be applied to the temperature detection in situ within a large range.
∶tin diselenide; second harmonic generation; Raman spectroscopy; crystal structure
2016-09-05
國(guó)家自然科學(xué)基金(61307120); 科技部國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFA0200700)
張帥(1991—),男,碩士研究生,研究方向?yàn)榘雽?dǎo)體材料制備和光電性能研究。
*通信作者,劉玫,副教授,碩士生導(dǎo)師,研究方向?yàn)槎S材料結(jié)構(gòu)與物性研究。E-mail: liumei@sdnu.edu.cn 劉新風(fēng),研究員,博士生導(dǎo)師,研究方向?yàn)槌旃鈱W(xué)、非線性光學(xué)和納米光子學(xué)。E-mail:liuxf@nanoctr.cn
O482.3
A
1002-4026(2017)02-0026-07
10.3976/j.issn.1002-4026.2017.01.006