楊 歡, 陳光淦, 何 興
(四川師范大學 數(shù)學與軟件科學學院, 四川 成都 610066)
有界區(qū)間上隨機分數(shù)階反應擴散方程鞅解的存在性
楊 歡, 陳光淦*, 何 興
(四川師范大學 數(shù)學與軟件科學學院, 四川 成都 610066)
有界區(qū)間上隨機分數(shù)階反應擴散方程在分數(shù)階非相對量子力學中起到很重要的作用.由于噪聲和有界區(qū)間上分數(shù)階Laplace算子的擾動和影響,使隨機分數(shù)階反應擴散方程的研究變得復雜.通過引入一個適當?shù)募訖嗪瘮?shù)來構(gòu)造加權空間,運用算子理論來克服有界區(qū)間上的分數(shù)階Laplace算子帶來的困難.運用Prokhorov定理和Skorokhod嵌入定理來解決噪聲帶給系統(tǒng)的通常緊性不成立的收斂問題.利用It公式和一系列精致的不等式技巧,以及Galerkin方法,最終獲得系統(tǒng)鞅解的存在性.
有界區(qū)間上分數(shù)階Laplace算子; 白噪聲; 反應擴散方程; 鞅解
有界區(qū)域上的分數(shù)階反應擴散方程是常擴散方程的一種拓展,它源于反常擴散模型,用于描述具有分形結(jié)構(gòu)的多孔介質(zhì)中的反常擴散現(xiàn)象,在物理、財經(jīng)、水文學、以及工程學、材料科學等方面,都有廣泛應用[1-6].
本文考慮如下隨機分數(shù)階反應擴散方程
(1)
這里,有界區(qū)間D=(-1,1)?R1,Dc=R1D,W(t)是一個Wiener過程.分數(shù)階Laplace算子(-Δ)s定義如下
0
(2)
其中Cs是依賴于s的常數(shù).有界區(qū)域上的分數(shù)階Laplace算子(-Δ)s與正常的Laplace算子有很大的不同[7].因此,對于有界區(qū)域上的分數(shù)階Laplace算子驅(qū)動的發(fā)展方程,受到了許多數(shù)學家的關注[7-9].
本文關心有界區(qū)域上分數(shù)階Laplace算子驅(qū)動的隨機分數(shù)階反應擴散方程.分析了分數(shù)階Laplace算子和白噪聲的特征.為了克服有界區(qū)域上分數(shù)階Laplace算子帶來的困難,引入一個新的加權函數(shù),來構(gòu)造加權Sobolev空間,進而再在這個空間上對方程進行研究.由于噪聲的擾動,系統(tǒng)(1)通常意義下的緊性不再成立,運用胎緊來代替.運用Prokhorov定理和Skorokhod嵌入定理來解決序列的收斂問題,最終獲得系統(tǒng)鞅解的存在性.
設s∈(0,1),D?R1且為有界區(qū)域,定義如下:
Ws,2(D):={u∈L2(D):
其中,‖u‖Ws,2(D)和[u]Ws,2(D)分別為經(jīng)典的分數(shù)階Sobolev空間Ws,2(D)的范數(shù)和半范數(shù)[10].
引理 1.1[10]設0
‖u‖Ws,2(D)≤C‖u‖W1,2(D),
W1,2(D)?Ws,2(D).
引理 1.3[11]設B0?B?B1,均為Banach空間,B0與B1是自反的,B0緊嵌入到B.設γ∈(0,1),X=L2(0,T;B0)∩Wγ,2(0,T;B1),那么X緊嵌入到L2(0,T;B).
根據(jù)文獻[8-9]有
x∈R1,
J*(u)(x,y)=-(u(y)-u(x))β(x,y),
x,y∈R1,
β(x,y)(Θ(x,y)β(x,y))dy,
其中,J是非局部散度算子,J*為J的伴隨算子,V(x,y),β(x,y):R1×R1→Rk,β是反對稱的,u(x):R1→R1,Θ(x,y)=Θ(y,x)為一個二階張量滿足Θ=ΘT.
(3)
設D?R1是一個開的有界區(qū)域,由文獻[10]及(2)式得
(-Δ)su(x)=J(Θ·J*u)(x)=J(J*u)(x).
〈(-Δ)su,u〉L2(D)=〈J*u(x),J*u(x)〉=
(5)
由x∈D=(-1,1),知ρ(x)有嚴格的正下界和上界,因此,加權分數(shù)階Sobolev空間范數(shù)定義為
從而
(6)
本文記
假設(H1):f(u)滿足
k2|u|p-α2|u|2≤f(u)u≤
k1|u|p+α1|u|2,
2
其中k1、k2、α1、α2均為正常數(shù).
假設(H2):g:H→L2(U,H)是連續(xù)的,且滿足
?u,v∈H,
其中C和λ為正常數(shù).在本文中,假定C均為正常數(shù),但是出現(xiàn)的C有所不同.
u∈L∞(0,T;H)∩L2(0,T;V)∩C([0,T];V1),
且使得對任意的t∈[0,T],v∈V有
(7)
則稱(Ω,F,,{Ft}t≥0,W,u)是方程(1)的鞅解.
定理 2.1 假定s∈(1/2,1),初值u0滿足F0可測,且u0∈L2(Ω,H).設(H1)和(H2)成立,則方程(1)存在一個鞅解.
任給n∈N,在有限維空間Hn上考慮以下隨機方程
(8)
由于在有限維空間上的隨機微分方程(8)滿足局部Lipschitz條件和線性增長,方程(8)有唯一強解un(t)∈L2(Ω;C([0,T];Hn))[12],滿足
(9)
由假設(H1),于是得
再利用Gronwall不等式,可得
(10)
由(10)式,知方程(8)的解{un}n∈N在空間L2(Ω,L2(0,T;V))上一致有界.
-Pn(-Δ)sun(r)-Pnf(un(r))〉dr+
于是,由Burkholder-Davis-Gundy不等式和Young不等式得
由假設(H1),從而
又由Gronwall不等式得
(11)
以上所有的C不依賴于n.
根據(jù)(9)式,令
(-Δ)sφ(x)=
C‖un‖H.
(12)
故由(10)、(11)和(12)式,以及內(nèi)插不等式和假設(H1)得
2k1α1‖
(13)
再由Burkholder-Davis-Gundy不等式及假設(H2)得
(14)
定義
Mn(t)=un(t)-Pnu0+
由(9)式,于是Mn(·)是一個鞅,其二階變差為
E([Mn(t)-Mn(r)]φ(un(·)))=0,
進一步
E([〈Mn(t),a〉〈Mn(t),b〉-
φ(un(·)))=0,
(15)
(16)
r.
(17)
從而對任意的t∈[0,T],v∈V有
[1] ZHUANG P, LIU F, ANH V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation[J]. SIAM Journal on Numerical Analysis,2008,46(2):1079-1095.
[2] LI X, XU M, JIANG X. Homotopy perturbation method to time-fractional diffusion equation with a moving boundary[J]. Applied Mathematics and Computation,2009,208(2):434-439.
[3] 孫峪懷,楊少華,王佼,等. 非線性Chaffee-Infante反應擴散方程的新精確解[J]. 四川師范大學學報(自然科學版),2012,35(3):293-296.
[4] 許永紅,陳賢峰,韓祥臨,等. 具有雙參數(shù)的非局部反應擴散方程非線性奇攝動問題[J]. 陜西師范大學學報(自然科學版),2015,43(1):8-12.
[5] REN C, XU X. Local stability for an inverse coefficient problem of a fractional diffusion equation[J]. Chin Ann Math,2014,B35(3):429-446.
[6] 黃銳,尹景學. 全空間RN中反應擴散方程的非平面行波解[J]. 華南師范大學學報(自然科學版),2013,45(1):1-9.
[7] KWASNICKI M. Eigenvalues of fractional Laplace operator in the interval[J]. J Funct Anal,2012,262(5):2379-2402.
[8] DU Q, GUNZBURGER M, LEHOUCQ R B, et al. Analysis and approximation of nonlocal diffusion problems with volume constraints[J]. SIAM Rev,2012,54(4):667-696.
[9] DU Q, GUNZBURGER M, LEHOUCQ R B, et al. A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws[J]. Math Models Methods Appl Sci,2013,23(3):493-540.
[10] NEZZA E D, PALATUCCI G, VALDINOCI E. Hitchhiker’s guide to the fractional Sobolev spaces[J]. Bull Sci Math,2012,136(5):521-573.
[11] FLANDOLI F, GATAREK D. Martingale and stationary solutions for stochastic Navier-Stokes equations[J]. Probab Theory Realt,1995,102(3):367-391.
[12] PREVOT C, ROCKNER M. A Concise Course on Stochastic Partial Differential Equations[M]. Berlin:Springer-Verlag,2007.
[13] JAKUBOWSKI A. The almost sure Skorokhod representation for subsequences in nonmetric spaces[J]. Translation in Theory Probab Appl,1998,42(1):167-175.
[14] DA PRATO G, ZABCZYK J. Stochastic equations in infinite dimensions[C]//Encyclopedia of Mathematics and its Applications, 44. Cambridge:Cambridge University Press,1992.
[15] BRZEZNIAK Z, MOTYL E. Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domians[J]. J Differential Equations,2013,254(4):1627-1685.
2010 MSC:35K05; 60H15; 60G46
(編輯 周 俊)
The Existence of Martingale Solution of the Stochastic FractionalReaction-diffusion Equation on Bounded Intervals
YANG Huan, CHEN Guanggan, HE Xing
(College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan)
This paper studies the stochastic fractional reaction-diffusion equation on bounded intervals, which plays a very important role in fractional nonrelativistic quantum mechanics. Due to interacting and disturbing of the fractional Laplacian operator on a bounded interval with white noise, the stochastic fractional reaction-diffusion equation is too complicated to be understood. By introducing a suitable weight function to construct the weighted space, we apply the operator theory to overcome the difficulties caused by the fractional Laplacian operator on bounded intervals. We apply Prokhorov theorem and Skorokhod embedding theorem to solve the convergence problem instead of losing the common compactness of the system caused by the white noise. On the basis of Itformula, a series of exquisite inequalities and Galerkin approximation, we finally establish the existence of the martingale solution of the stochastic fractional reaction-diffusion equation on bounded intervals.
fractional Laplacian operator on bounded intervals; white noise; reaction-diffusion equation; martingale solution
2015-11-08
國家自然科學基金(11571245和11401409)和四川省教育廳重點科研項目(15ZA0031)
O175.2
A
1001-8395(2016)06-0794-07
10.3969/j.issn.1001-8395.2016.06.003
*通信作者簡介:陳光淦(1978—),男,教授,主要從事隨機偏微分方程的研究,E-mail:chenguanggan@hotmail.com