克曉燕
100191北京市,北京大學第三醫(yī)院血液科
?
·新進展·
嵌合抗原受體-T細胞免疫治療在血液系統(tǒng)惡性腫瘤中的應用進展
克曉燕
100191北京市,北京大學第三醫(yī)院血液科
【摘要】嵌合抗原受體(CAR)將單鏈抗體可變區(qū)與T細胞的活化基序相融合,使其修飾的T細胞具有非主要組織相容性復合物(MHC)限制性識別腫瘤抗原及殺傷靶細胞的雙重功能。CAR細胞內區(qū)的結構從表達單一信號分子的第1代,發(fā)展為添加1個及2個以上共刺激分子的第2代和第3代以及增加了編碼CAR和/或其啟動子、自殺基因等的第4代,使T細胞在體內的存活時間和殺傷能力明顯增強且能夠調控。本文就CAR-T細胞免疫治療的原理、在血液系統(tǒng)惡性腫瘤中的應用以及主要不良反應和應對措施進行分析,發(fā)現(xiàn)應用CAR-T細胞免疫治療多種血液系統(tǒng)惡性腫瘤取得了較好臨床療效,其中以靶向CD(19)的CAR-T細胞免疫治療療效尤為突出,患者的生存期延長、生活質量改善并且不良反應較少。CAR-T細胞免疫治療的主要不良反應是脫靶效應和細胞因子釋放綜合征,需要引起臨床足夠重視。
【關鍵詞】血液腫瘤;嵌合抗原受體;T細胞;免疫治療
克曉燕.嵌合抗原受體-T細胞免疫治療在血液系統(tǒng)惡性腫瘤中的應用進展[J].中國全科醫(yī)學,2016,19(12):1361-1366.[www.chinagp.net]
Ke XY.Application of CAR-T cell immunotherapy in the treatment of hematological malignancy[J].Chinese General Practice,2016,19(12):1361-1366.
傳統(tǒng)的放療、化療、手術、造血干細胞移植等治療方法延長了部分血液系統(tǒng)惡性腫瘤患者的生存時間,但是復發(fā)、難治甚至耐藥現(xiàn)象,仍是目前面臨的巨大挑戰(zhàn)。近年來,細胞免疫治療因在腫瘤的治療中取得了突破性進展,成為血液系統(tǒng)等多種腫瘤治療的重要手段,被Science雜志列為2013年十大科學突破的首位[1]。其中,嵌合抗原受體(chimeric antigen receptor,CAR)-T細胞免疫治療進展尤為突出,自Gross等[2]1989年首次提出這一概念至今,CAR-T細胞在治療包括白血病、淋巴瘤、黑色素瘤、神經母細胞瘤、肉瘤等的多項臨床研究中表現(xiàn)出了良好的靶向性、殺傷活性和持久性,成為治療血液系統(tǒng)惡性腫瘤的有效方法。本文將主要介紹CAR-T細胞免疫治療在血液系統(tǒng)惡性腫瘤中的原理、臨床應用、主要不良反應及應對措施等。
1CAR-T細胞免疫治療原理
1.1CAR-T細胞作用原理T細胞的活化有賴于雙信號系統(tǒng)共同作用:第一信號由T細胞表面受體(TCR)與Ⅰ類、Ⅱ類主要組織相容性復合物(major histocompatibility complex,MHC)結合;第二信號主要由抗原遞呈細胞上的B7家族分子與其在T細胞上的配體CD28相結合產生協(xié)同刺激信號(即B7/CD28協(xié)同刺激信號)[3]。CAR-T細胞免疫治療是利用基因工程的方法,將識別目標抗原的單鏈抗體與間隔區(qū)、跨膜基序和T細胞的活化基序等結合為一體,利用該融合基因修飾T細胞,既能夠特異性識別并結合腫瘤抗原,又具備T細胞自我更新和殺傷能力,可不受腫瘤局部微環(huán)境免疫抑制、以非MHC限制性的方式特異性殺傷腫瘤細胞[4]。
1.2CAR的結構CAR的模塊化結構主要包括:細胞外抗原結合區(qū)、鉸鏈區(qū)、中間的跨膜區(qū)域和細胞內信號轉導區(qū)(見圖1)[5]。細胞外區(qū)為單克隆抗體的單鏈可變區(qū)(single chain variable fragment,scFv),由輕鏈和重鏈共同組成,能夠識別特定腫瘤抗原;跨膜區(qū)有H2-Kb、FcεRIc、CD4、CD7、CD8、CD28和CD3ζ等[6],將CAR結構錨定于T細胞膜上;細胞內區(qū)為T 細胞受體TCR/CD3ζ鏈或免疫球蛋白 Fc 受體 FcεRIγ鏈,含有免疫受體酪氨酸活化基序(immunoreceptor tyrosine-based activation motifs,ITAMs),可發(fā)揮信號轉導功能[4]。目前,已有多種腫瘤抗原可用作細胞外區(qū)識別,包括CD19、CD20、表皮生長因子受體(EGFR)、前列腺特異性膜抗原(PSMA)、人類表皮生長因子受體2(HER-2)/neu、GD2、ROR1和碳酸酐酶Ⅸ(CAⅨ)等[7]。不同的跨膜區(qū)表達CAR的能力不同,Pulè等[8]發(fā)現(xiàn),含有CD28的跨膜區(qū)表達CAR的能力最強,含有CD134(OX40)的跨膜區(qū)次之,而含有CD3ζ的跨膜區(qū)表達能力最低。
圖1 CAR的結構
根據(jù)細胞內的區(qū)結構不同,CAR可劃分為4代:第1代CAR(scFv+信號轉導區(qū)),細胞內區(qū)只表達單一的信號分子(TCR/CD3ζ鏈或FcεRIγ鏈),不表達共刺激分子,能夠識別靶抗原并激活T細胞,但不轉導增殖信號和誘導細胞因子產生,體內無法持續(xù)抗腫瘤;第2代CAR(scFv+信號轉導區(qū)+一種共刺激分子),細胞內區(qū)添加了一個共刺激分子〔如CD27、CD28、OX40、可誘導共刺激分子(inducible costimulatory molecule,ICOS)或CD137(4-1BB)等〕,可實現(xiàn)協(xié)同刺激分子和細胞內信號的雙重活化,使T細胞持續(xù)增殖并釋放細胞因子,提高T細胞的抗腫瘤能力[9];第3代CAR(scFv+信號轉導區(qū)+二種以上共刺激分子),細胞內區(qū)整合了2個以上的協(xié)同刺激分子,與第2代CAR相比,T細胞活化、增殖、分泌細胞因子及細胞毒素作用更強,但靶向識別特異性降低,低親和分子亦可促進T細胞活化,可產生細胞因子風暴[10- 11];第4代CAR(又稱TRUCKs),在第3代CAR的基礎上增加了編碼CAR和/或其反應性啟動子的載體,在轉基因產生的細胞因子作用下CAR產生有效信號,并能夠招募免疫系統(tǒng)其他成員,放大抗腫瘤免疫效應[12-13]。最近一項研究在動物體內應用雙特異性CAR-T細胞,發(fā)現(xiàn)其具有招募抗體以及抗腫瘤的活性[14]。也有研究在CAR結構中引入自殺基因,以調控T細胞的殺傷能力和擴增能力[15];還可構建對多種腫瘤均有很強親和力的通用CAR(universal CAR,uCAR),通過使T細胞迅速擴增、產生大量細胞因子,增強其抗腫瘤作用[16-17]。
本文背景和要點:
近年來,隨著分子生物學、免疫學等基礎學科的進展,細胞免疫治療成為包括血液惡性腫瘤在內的多種惡性腫瘤治療的重要手段,被Science雜志列為2013年十大科學突破之首。其中,關于嵌合抗原受體(CAR)-T細胞的臨床研究首先在血液系統(tǒng)惡性腫瘤的治療中取得了令人振奮的效果,靶向CD19的CAR-T細胞免疫治療能夠將急性淋巴細胞白血病患者的完全緩解率提高至90%,成為目前研究的熱點。另一方面,CAR-T細胞免疫治療還處于發(fā)展階段,在淋巴瘤、骨髓瘤等血液系統(tǒng)惡性腫瘤及實體瘤的治療中還有很大的發(fā)展空間。本文對CAR-T細胞免疫治療的原理、應用于血液系統(tǒng)惡性腫瘤的臨床試驗以及該療法主要的不良反應和應對措施進行評價及分析,旨在為CAR-T細胞免疫治療更規(guī)范、有效的應用于血液系統(tǒng)腫瘤提供思路和方向。
2CAR-T細胞免疫治療的臨床應用
目前,應用CAR-T細胞免疫治療血液系統(tǒng)惡性腫瘤,主要包括構建靶向CD19、CD20、Kappa輕鏈、CD22、CD23、CD30、CD33、CD38、CD70等抗體的CAR來修飾T細胞進行臨床試驗,其中以靶向CD19的CAR-T細胞免疫治療的療效尤為突出[5,18]。
2.1CAR-T細胞免疫治療在白血病中的應用CD19特異性表達于惡性B細胞和正常B細胞以及B細胞前體細胞,而造血干細胞及非造血細胞則不表達CD19,因此目前靶向CD19的CAR-T細胞免疫治療在臨床上研究最多[19]。早期應用第1代靶向CD19的CAR-T細胞,因缺乏共刺激分子、T細胞體內存活時間較短、釋放細胞因子有限,治療效果并不顯著[20]。后續(xù)臨床試驗多選用第2代CAR-T細胞,抗腫瘤作用明顯提升,如Maude等[21]應用自體抗CD19的第2代CAR-T細胞(CTL019)免疫治療30例復發(fā)/難治急性淋巴細胞白血病(acute lymphoblastic leukemia,ALL)患兒,其中90%(27例)達完全緩解(CR),持續(xù)緩解6個月的無事件生存率為67%,即使干細胞移植失敗的患者亦可持續(xù)緩解達24個月;Davila等[22]應用自體抗CD19的第2代19-28z CAR-T細胞免疫治療16例復發(fā)ALL的成人患者,CR率亦達到88%;Lee等[23]應用自體抗CD19的第2代CAR-T細胞免疫治療20例復發(fā)/難治的兒童和成人ALL患者,CR率可達70%,61%的患者腦脊液中可檢測到CAR-T細胞,且輸注1×106個/kg CAR-T細胞未出現(xiàn)明顯不良反應。
一些臨床前研究發(fā)現(xiàn),CAR-T細胞免疫治療可能具有根治急性髓細胞白血病(acute myeloid leukemia,AML)的潛力,但多數(shù)AML細胞與造血干細胞或早期祖細胞公用抗原,故限制了其應用[24]。最早被選作CAR-T細胞免疫治療AML的靶點是Lewis Y寡糖抗原(LeY),應用LeY-CAR-T細胞免疫治療AML移植瘤NOD/SCID鼠,可明顯減緩腫瘤生長[25]。之后一項Ⅰ期臨床試驗應用靶向LeY抗原的自體第2代CAR-T細胞免疫治療4例復發(fā)的AML患者,其中1例達細胞學緩解,其余3例獲得了部分緩解(PR)/病情穩(wěn)定(SD),且未見明顯不良反應[26]。應用抗CD123的第2代CAR-T細胞(CD123scFv-CD127-CD3ζ)免疫治療AML免疫缺陷小鼠,可清除AML細胞,顯示了其良好的療效,但因CD123也表達于部分造血祖細胞,靶向CD123的CAR-T細胞亦能殺傷正常人的造血祖細胞[27]。因此,對于CAR-T細胞免疫治療在AML患者中的應用除仍需繼續(xù)尋找更加特異的腫瘤標志物外,還需積極尋找其他聯(lián)合治療方案。
對于慢性淋巴細胞白血病(chronic lymphocytic leukaemia,CLL),研究發(fā)現(xiàn)靶向CD19的CAR-T細胞可在體內以指數(shù)方式擴增以清除腫瘤,14例復發(fā)/難治CLL患者的總反應率達57%(8/14),其中2例CR患者體內的CAR-T細胞免疫治療作用可長達4年[28],且添加CD28共刺激分子的靶向CD19的CAR-T細胞免疫治療甚至對異基因干細胞移植后的復發(fā)CLL患者也顯示了良好的療效[29]。然而,對于同樣為惡性B細胞腫瘤的CLL患者,靶向CD19的CAR-T細胞免疫治療的療效卻低于ALL患者,可能源于其不同于ALL患者的體內微環(huán)境。
細胞內蛋白WT1過表達于多種急慢性白血病和實體腫瘤細胞中,Rafiq等[30]使用ESK1 TCRm(又稱WT1 28z)作為CAR,能夠特異性殺傷WT1-HLA-A*02:01陽性的多種腫瘤細胞,提示CAR-T細胞免疫治療亦可靶向腫瘤細胞內蛋白抗原,這就為特異性腫瘤抗原的選擇拓寬了思路。
2.2CAR-T細胞免疫治療在淋巴瘤中的應用應用靶向CD19的CAR-T細胞免疫治療非霍奇金淋巴瘤(non-Hodgkin′s lymphoma,NHL)患者顯示了較好的療效,但與治療ALL患者療效相比仍需優(yōu)化改進[31]。Kochenderfer等[32-33]首先報道了一部分濾泡淋巴瘤(FL)患者應用靶向CD19的CAR-T細胞免疫治療后可達PR,隨后該課題組將靶向CD19的CAR-T細胞免疫治療應用于彌漫大B細胞淋巴瘤(DLBCL)患者,發(fā)現(xiàn)4/7患者達CR,2/7患者達PR,4例CR患者中3例持續(xù)緩解9~22個月[34]。Schuster等[35]應用靶向CD19的CAR-T細胞免疫治療復發(fā)/難治性NHL患者的Ⅱa期臨床試驗,總反應率達67%(其中12例DLBCL患者的反應率為50%,6例FL患者反應率則為100%),中位隨訪6個月患者的無進展生存率為59%。
一項Ⅰ期臨床試驗應用靶向CD20分子的第3代CAR-T細胞免疫治療4例復發(fā)的惰性B細胞淋巴瘤和套細胞淋巴瘤患者顯示了較好療效,2例患者持續(xù)無疾病進展期分別達12個月和24個月,且均耐受良好,無明顯不良反應[36]。將靶向CD30的CAR負載于EB病毒特異性細胞毒性T細胞(EBV-CTLs)制備CD30CAR(+) EBV-CTLs,該細胞能夠在霍奇金淋巴瘤(Hodgkin′s lymphoma,HL)移植瘤模型中發(fā)揮抗腫瘤作用[37]。Mihara等[38]應用抗CD123的第2代CAR-T細胞(CD123scFv-CD127-CD3ζ)免疫治療HL移植瘤小鼠,6個月的無復發(fā)生存率為100%。
2.3CAR-T細胞免疫治療在多發(fā)性骨髓瘤(multiple myeloma,MM)中的應用近50%的MM患者表達LeY抗原,而應用LeY-CAR-T細胞免疫治療能夠明顯延遲骨髓瘤異種移植物NOD/SCID鼠中的生長[25]。Ruella等[39]應用靶向CD38、CD56的CAR-T細胞免疫治療MM,顯示了較強的細胞毒性。在78例MM患者骨髓活檢樣本中,免疫組化染色顯示腫瘤-睪丸抗原NY-ESO-1表達率為9.7%,將NY-ESO-1作為腫瘤抗原設計CAR-T細胞免疫治療,能夠顯著抑制抗原陽性的MM移植瘤小鼠的腫瘤生長[40]。
2.4CAR-T細胞免疫治療在其他血液病中的應用應用Ⅷ因子的CAR(FⅧscFv-CD28-CD3ζ)修飾調節(jié)性T細胞(Treg細胞),發(fā)現(xiàn)FⅧCAR-Treg細胞可誘導針對Ⅷ因子抗體的免疫耐受,提示其可能在Ⅷ因子抗體陽性的血友病A患者中具有較好的應用前景[41]。可見,應用CAR技術修飾其他免疫相關細胞可能為惡性腫瘤以外的血液病、乃至自身免疫病提供一種新的研究方向。
2.5CAR-T細胞免疫治療在實體腫瘤中的應用基于實體腫瘤缺乏較理想的特異性表面抗原,且具有不同的免疫抑制機制,CAR-T細胞免疫治療的療效不及血液腫瘤(特別是B細胞惡性腫瘤),但其在黑色素瘤、神經母細胞瘤、肉瘤、間皮瘤、胰腺癌等腫瘤中取得了較好的療效,如Morgan等[42]應用靶向人黑色素瘤標志物α-MART-1的CAR-T細胞免疫治療17例轉移性黑色素瘤患者發(fā)現(xiàn),2例患者腫瘤完全消退,其余患者外周血中持續(xù)存在高比例(9%~56%)的回輸T細胞,且病情穩(wěn)定;Louis等[43]應用靶向神經節(jié)苷脂2(GD2)的CAR-T細胞免疫治療19例高危神經母細胞瘤患者,11例進展期患者中3例達到CR,這些CAR-T細胞可在患者體內擴增、持續(xù)存在并與患者長期生存相關。人腺癌中過表達HER-2,應用抗-HER-2的CAR-T細胞免疫治療19例HER-2+的肉瘤患者,未見明顯與輸注劑量相關的CAR-T細胞毒性,總生存期為5.1~29.1個月,中位生存期為10.3個月,其中4例患者SD達3~14個月[44]。應用間皮素特異性mRNA-CAR-T細胞免疫治療間皮素高表達的晚期實體腫瘤患者(1例惡性胸膜間皮瘤和1例轉移性胰腺癌),也取得了較好的抗腫瘤作用[45]。另外,由于腫瘤新生血管與腫瘤的生長與轉移關系密切,應用靶向新生血管中過表達的血管內皮生長因子受體2(VEGFR-2)的CAR-T細胞進行免疫治療,能夠抑制不同的小鼠腫瘤生長,且對正常組織無明顯損傷,進而發(fā)揮間接抗腫瘤作用[46-47]。
3CAR-T細胞免疫治療的主要不良反應及應對措施
CAR-T細胞免疫治療為包括血液病在內的多種晚期惡性腫瘤患者帶來治愈希望的同時,也帶來諸多不良反應,甚至一些是致命的,需要引起臨床足夠的重視。
3.1脫靶效應(on-target toxicity)脫靶效應常見于應用CAR-T細胞免疫治療實體腫瘤的患者中,主要由于CAR定向的靶抗原多為腫瘤相關抗原(TAA),其并非腫瘤細胞所特有,且在正常組織中存在不同程度的表達,因此對靶抗原親和力強、殺傷能力強的CAR-T細胞在清除腫瘤的同時也會攻擊正常組織。HER-2-CAR-T細胞可殺傷低表達HER-2的肺組織,引起致命性肺損傷[48]。靶向CD19的CAR-T細胞免疫治療過程中會出現(xiàn)B細胞無能[49]。因此,可采取以下措施預防和治療脫靶效應:(1)選擇僅表達于腫瘤細胞而在正常細胞不表達的腫瘤特異性抗原(TSA);(2)研發(fā)與靶抗原具有特定親和力的CAR;(3)構建跨信號CAR,不直接相連CAR結構中的T細胞活化信號CD3ζ與共刺激信號CD28分子[50];(4)輸注丙種球蛋白治療靶向CD19的CAR-T細胞免疫治療引起的B細胞缺乏等[49]。
3.2細胞因子釋放綜合征(cytokine release syndrome,CRS)第2、3代CAR中引入了共刺激分子,使T細胞的活化、增殖、殺傷能力大幅度增強,在治療過程中產生大量細胞因子并釋放入血,引起患者惡心、頭痛、心動過速、低血壓、胸悶、氣促等臨床癥狀,嚴重者可導致急性呼吸窘迫綜合征或多器官功能衰竭[48,51]。CRS是CAR-T細胞免疫治療過程中常見的致死性并發(fā)癥,需要高度警惕,可采取以下措施進行控制:(1)研發(fā)更加安全的CAR結構并嚴格限制每次輸注的CAR-T細胞數(shù)量;(2)適當應用糖皮質激素及細胞因子拮抗劑〔如IL-6阻斷劑—塔西單抗(Tocilizumab)〕[52];(3)在降低腫瘤負荷后應用CAR-T細胞免疫治療。
4小結及展望
CAR-T細胞免疫治療時應用靶向腫瘤抗原的CAR修飾T細胞,將抗原抗體的高親和性與T細胞的殺傷效應相結合,在多種惡性腫瘤(特別是B細胞血液腫瘤)的治療中取得了令人欣喜的療效[21-23],成為現(xiàn)今腫瘤免疫治療的熱點,具有廣闊的應用前景。然而,在提升CAR-T細胞抗腫瘤能力的同時減少其不良反應等問題仍存在諸多挑戰(zhàn),應重視特異性腫瘤抗原的選取,CAR結構的優(yōu)化改進。另外,CAR-T細胞免疫治療與其他細胞免疫治療技術及傳統(tǒng)放化療的結合,CAR-T細胞具體回輸?shù)臅r機、劑量、次數(shù)、抗腫瘤效應的調控、有效評估系統(tǒng)的界定,CAR-T細胞免疫治療與造血干細胞移植的聯(lián)合及復發(fā)患者的治療選擇等問題均需要大量的臨床前研究及多中心大樣本臨床試驗進一步研究。因此,針對這些亟待解決的問題進行深入探討,將為CAR-T細胞免疫治療大規(guī)模應用于血液系統(tǒng)惡性腫瘤提供新的思路和方向。
參考文獻
[1]Couzin-Frankel J.Breakthrough of the year 2013.Cancer immunotherapy[J].Science,2013,342(6165):1432-1433.
[2]Gross G,Waks T,Eshhar Z.Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity[J].Proc Natl Acad Sci U S A,1989,86(24):10024-10028.
[3]Medzhitov R,Janeway CA Jr.Innate immunity:impact on the adaptive immune response[J].Curr Opin Immunol,1997,9(1):4-9.
[4]Ramos CA,Dotti G.Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy[J].Expert Opin Biol Ther,2011,11(7):855-873.
[5]Gill S,Maus MV,Porter DL.Chimeric antigen receptor T cell therapy:25 years in the making[J].Blood Rev,2015.[Epud ahead of print]
[6]Shi H,Liu L,Wang Z.Improving the efficacy and safety of engineered T cell therapy for cancer[J].Cancer Lett,2013,328(2):191-197.
[7]Turtle CJ,Riddell SR.Genetically retargeting CD8+lymphocyte subsets for cancer immunotherapy[J].Curr Opin Immunol,2011,23(2):299-305.
[8]Pulè MA,Straathof KC,Dotti G,et al.A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells[J].Mol Ther,2005,12(5):933-941.
[9]Kowolik CM,Topp MS,Gonzalez S,et al.CD28costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells[J].Cancer Res,2006,66(22):10995-11004.
[10]Song DG,Ye Q,Poussin M,et al.CD27costimulation augments the survival and antitumor activity of redirected human T cells in vivo[J].Blood,2012,119(3):696-706.
[11]Kochenderfer JN,Dudley ME,Feldman SA,et al.B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19chimeric-antigen-receptor-transduced T cells[J].Blood,2012,119(12):2709-2720.
[12]Pegram HJ,Lee JC,Hayman EG,et al.Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning[J].Blood,2012,119(18):4133-4141.
[13]Chmielewski M,Hombach AA,Abken H.Of CARs and TRUCKs:chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma[J].Immunol Rev,2014,257(1):83-90.
[14]Kobold S,Steffen J,Chaloupka M,et al.Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer[J].J Natl Cancer Inst,2014,107(1):364.
[15]Gargett T,Brown MP.The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target,off-tumor toxicities of chimeric antigen receptor T cells[J].Front Pharmacol,2014(5):235.
[16]Tamada K,Geng D,Sakoda Y,et al.Redirecting gene-modified T cells toward various cancer types using tagged antibodies[J].Clin Cancer Res,2012,18(23):6436-6445.
[17]Kudo K,Imai C,Lorenzini P,et al.T lymphocytes expressing a CD16signaling receptor exert antibody-dependent cancer cell killing[J].Cancer Res,2014,74(1):93-103.
[18]Maude S,Barrett DM.Current status of chimeric antigen receptor therapy for haematological malignancies[J].Br J Haematol,2016,172(1):11-22.
[19]Jena B,Dotti G,Cooper LJ.Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor[J].Blood,2010,116(7):1035-1044.
[20]Jensen MC,Popplewell L,Cooper LJ,et al.Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans[J].Biol Blood Marrow Transplant,2010,16(9):1245-1256.
[21]Maude SL,Frey N,Shaw PA,et al.Chimeric antigen receptor T cells for sustained remissions in leukemia[J].N Engl J Med,2014,371(16):1507-1517.
[22]Davila ML,Riviere I,Wang X,et al.Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia[J].Sci Transl Med,2014,6(224):224ra25.
[23]Lee DW,Kochenderfer JN,Stetler-Stevenson M,et al.T cells expressing CD19chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults:a phase 1 dose-escalation trial[J].Lancet,2015,385(9967):517-528.
[24]Rambaldi A,Biagi E,Bonini C,et al.Cell-based strategies to manage leukemia relapse:efficacy and feasibility of immunotherapy approaches[J].Leukemia,2015,29(1):1-10.
[25]Peinert S,Prince HM,Guru PM,et al.Gene-modified T cells as immunotherapy for multiple myeloma and acute myeloid leukemia expressing the Lewis Y antigen[J].Gene Ther,2010,17(5):678-686.
[26]Ritchie DS,Neeson PJ,Khot A,et al.Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia[J].Mol Ther,2013,21(11):2122-2129.
[27]Gill S,Tasian SK,Ruella M,et al.Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells[J].Blood,2014,123(15):2343-2354.
[28]Porter DL,Hwang WT,Frey NV,et al.Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J].Sci Transl Med,2015,7(303):303ra139.
[29]Kochenderfer JN,Dudley ME,Carpenter RO,et al.Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation[J].Blood,2013,122(25):4129-4139.
[30]Rafiq S,Dao T,Liu C,et al.Engineered T cell receptor-mimic antibody,(TCRm) Chimeric Antigen Receptor (CAR) T cells against the intracellular protein wilms tumor-1 (WT1) for treatment of hematologic and solid cancers[J].Blood (ASH annual meeting Abstracts),2014,124(21):2155.
[31]Enblad G,Karlsson H,Loskog AS.CAR T-cell therapy:the role of physical barriers and immunosuppression in lymphoma[J].Hum Gene Ther,2015,26(8):498-505.
[32]Kochenderfer JN,Wilson WH,Janik JE,et al.Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19[J].Blood,2010,116(20):4099-4102.
[33]Kochenderfer JN,Dudley ME,Feldman SA,et al.B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19chimeric-antigen-receptor-transduced T cells[J].Blood,2012,119(12):2709-2720.
[34]Kochenderfer JN,Dudley ME,Kassim SH,et al.Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19chimeric antigen receptor[J].J Clin Oncol,2015,33(6):540-549.
[35]Schuster SJ,Svoboda J,Nasta S,et al.Phase Ⅱa trial of chimeric antigen receptor modified T cells directed against CD19(CTL019) in patients with relapsed or refractory CD19+lymphomas[J].J Clin Oncol,2015,33(Suppl):abstract 8516.
[36]Till BG,Jensen MC,Wang J,et al.CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28and 4-1BB domains:pilot clinical trial results[J].Blood,2012,119(17):3940-3950.
[37]Savoldo B,Rooney CM,Di Stasi A,et al.Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease[J].Blood,2007,110(7):2620-2630.
[38]Mihara K,Bhattacharyya J,Kitanaka A,et al.T-cell immunotherapy with a chimeric receptor against CD38is effective in eliminating myeloma cells[J].Leukemia,2012,26(2):365-367.
[39]Ruella M,Kenderian SS,Shestova O,et al.Novel chimeric antigen receptor T cells for the treatment of hodgkin lymphoma[J].Blood,2014,124(21):806.
[40]Schuberth PC,Jakka G,Jensen SM,et al.Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma[J].Gene Ther,2013,20(4):386-395.
[41]Kim YC,Zhang AH,Su Y,et al.Engineered antigen-specific human regulatory T cells:immunosuppression of FⅧ-specific T- and B-cell responses[J].Blood,2015,125(7):1107-1115.
[42]Morgan RA,Dudley ME,Wunderlich JR,et al.Cancer regression in patients after transfer of genetically engineered lymphocytes[J].Science,2006,314(5796):126-129.
[43]Louis CU,Savoldo B,Dotti G,et al.Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma[J].Blood,2011,118(23):6050-6056.
[44]Ahmed N,Brawley VS,Hegde M,et al.Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma[J].J Clin Oncol,2015,33(15):1688-1696.
[45]Beatty GL,Haas AR,Maus MV,et al.Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies[J].Cancer Immunol Res,2014,2(2):112-120.
[46]Chinnasamy D,Yu Z,Theoret MR,et al.Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice[J].J Clin Invest,2010,120(11):3953-3968.
[47]Kanagawa N,Yanagawa T,Nakagawa T,et al.Tumor vessel-injuring ability improves antitumor effect of cytotoxic T lymphocytes in adoptive immunotherapy[J].Cancer Gene Ther,2013,20(1):57-64.
[48]Morgan RA,Yang JC,Kitano M,et al.Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2[J].Mol Ther,2010,18(4):843-851.
[49]Davila ML,Kloss CC,Gunset G,et al.CD19CAR-T argeted T cells induce long-term remission and B cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia[J].PLoS One,2013,8(4):e61338.
[50]Lanitis E,Poussin M,Klattenhoff AW,et al.Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo[J].Cancer Immunol Res,2013,1(1):43-53.
[51]Brentjens R,Yeh R,Bernal Y,et al.Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells:case report of an unforeseen adverse event in a phase I clinical trial[J].Mol Ther,2010,18(4):666-668.
[52]Xu XJ,Tang YM.Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells[J].Cancer Lett,2014,343(2):172-178.
(本文編輯:李婷婷)
Application of CAR-T Cell Immunotherapy in the Treatment of Hematological Malignancy
KEXiao-yan.DepartmentofHematology,PekingUniversityThirdHospital,Beijing100191,China
【Abstract】Chimeric antigen receptor (CAR) connects single-chain variable fragment and activation motif of T cells,which allows modified T cells possess dual functions of recognizing tumor antigens in an MHC unrestricted way and killing the target cells.The intracellular structures of CAR has changed over time,from the first generation with the expression of single signal molecule,to the second and third generation adding one or two and multiple costimulatory endodomains,and to the fourth generation combining with the domains of coding CAR and/or the promoter,and suicide gene.They enhance and regulate the persistence and cytotoxicity of modified T cells.This paper summarized the available data on the principle of CAR-T cell immunotherapy,its application in the treatment of hematological malignancy,and the main adverse reactions and response measures.It was found that chimeric antigen receptor-T (CAR-T) cells have received better therapeutic effect in many types of hematological malignancy,remarkably for the CAR-T cell immunotherapy targeting CD(19);patients who adopt cell immunotherapy have prolonged survival,improved quality of life,and less adverse reactions.The main adverse reactions of CAR-T cell immunotherapy are on-target toxicity and cytokine release syndrome,which must be paid more attention.
【Key words】Hematologic neoplasms;Chimeric antigen receptor;T cell;Immnunotherapy
(收稿日期:2016-01-29;修回日期:2016-03-01)
【中圖分類號】R 730.263
【文獻標識碼】C
doi:10.3969/j.issn.1007-9572.2016.12.001