亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        景觀和能源專(zhuān)輯引言

        2016-04-15 08:42:40德克西蒙斯ProfemirDirkSijmons教授
        風(fēng)景園林 2016年11期
        關(guān)鍵詞:風(fēng)景園林燃料景觀

        德克·西蒙斯(Prof.em. ir. Dirk Sijmons)教授

        景觀和能源專(zhuān)輯引言

        Introduction for the special issue 'Landscape and Energy' Prof.em. ir. Dirk Sijmons

        德克·西蒙斯(Prof.em. ir. Dirk Sijmons)教授

        目前已經(jīng)有195個(gè)國(guó)家簽署了巴黎協(xié)定,致力于將全球氣候變暖控制住并降低2℃,大多數(shù)人意識(shí)到實(shí)現(xiàn)該目標(biāo)所需要的行動(dòng)將會(huì)極大地影響到陸地景觀乃至海洋風(fēng)貌。不僅是那些屬于能源轉(zhuǎn)型類(lèi)的項(xiàng)目(如風(fēng)力渦輪機(jī)基地、太陽(yáng)能基地、水力發(fā)電廠、潮汐發(fā)電廠、地?zé)嵩O(shè)施等),還有植樹(shù)造林項(xiàng)目和生物量生產(chǎn),將會(huì)逐漸改變地球面貌。這并不是一件容易的事。以景觀這種象征性和富于意義的形式存在的空間將會(huì)成為該轉(zhuǎn)型成敗的戰(zhàn)場(chǎng)。我確信,在全世界范圍內(nèi)風(fēng)景園林師將開(kāi)始發(fā)揮作用。

        為了強(qiáng)調(diào)向無(wú)碳化社會(huì)轉(zhuǎn)型需要一種全球視角,從全世界范圍內(nèi)征集文章似乎是一個(gè)很棒的主意。我們正在尋找活躍在能源與景觀這個(gè)新前沿方向的風(fēng)景園林師進(jìn)行的項(xiàng)目。我們歡迎國(guó)際風(fēng)景園林師聯(lián)合會(huì)(IFLA)渠道所有種類(lèi)的項(xiàng)目。這些項(xiàng)目可大可小,可以是建成的也可以是分析型的,可以是設(shè)計(jì)項(xiàng)目也可以是通過(guò)設(shè)計(jì)展開(kāi)的研究。它們可能涉及發(fā)電項(xiàng)目、熱量串聯(lián)或生產(chǎn)生物燃料,也可能通過(guò)植樹(shù)造林或者間接的政府政策來(lái)解決 CO2排放。讀者們會(huì)發(fā)現(xiàn)即使是關(guān)于化石燃料景觀和基礎(chǔ)設(shè)施的清理也會(huì)受到歡迎。

        從加拿大,我們收到了凱斯·洛克曼(Kees Lokman,英屬哥倫比亞大學(xué)風(fēng)景園林學(xué)助理教授)的文章,該文展示了有關(guān)城市代謝的開(kāi)拓性理論可以如何被作為一種設(shè)計(jì)框架用于設(shè)想低碳未來(lái)。

        從法國(guó),我們收到了來(lái)自凡爾賽國(guó)立景觀設(shè)計(jì)學(xué)校的成果,該成果的指導(dǎo)老師是阿爾蘭·多羅(Auréline Doreau),伯特蘭·佛蘭(Bertrand Folléa),帕特里克·托基(Patrick Moquay),以及工作室的學(xué)生莫嘉娜·布朗扎克 (Morgane Braouezec),愛(ài)麗絲·斯蒂芬(Alice Stevens),史蒂夫·沃爾克(Steve Walker),奧費(fèi)力·布韋(Ophélie Bouvet),利亞·維特(Léa Chauvet),吉特吉·杜馬斯(Guillemette Dumars)和阿德里安·盧梭(Adrien Rousseau)一起,展示了凡爾賽ENSP的成果。這個(gè)關(guān)于為推動(dòng)綠色增長(zhǎng)而設(shè)立積極能源區(qū)的研究不僅內(nèi)容非常有趣,也表明了凡爾賽國(guó)立景觀設(shè)計(jì)學(xué)校已經(jīng)有了一位專(zhuān)門(mén)的“風(fēng)景園林與能源主席”。這一成果凸顯了在風(fēng)景園林雜志本期專(zhuān)輯中討論該主題的迫切性。

        最后,來(lái)自荷蘭的是我自己的文章,該文簡(jiǎn)要介紹了兩個(gè)通過(guò)設(shè)計(jì)展開(kāi)研究的過(guò)程,一個(gè)是在4個(gè)尺度(歐洲、荷蘭、4個(gè)地區(qū)、家庭)上設(shè)計(jì)轉(zhuǎn)型,另一個(gè)是在北海上大規(guī)模利用風(fēng)能的案例。

        從《風(fēng)景園林》這一中國(guó)期刊的視角看,展示上述最新動(dòng)向有3個(gè)充足的理由。首先,作為即將成為世界上最大的 CO2排放國(guó)之一的中國(guó)有著最具雄心的能源轉(zhuǎn)型計(jì)劃以及已完工的龐大風(fēng)力和太陽(yáng)能項(xiàng)目。第二個(gè)原因是中國(guó)有著世界上最多的風(fēng)景園林設(shè)計(jì)師。作為本刊的主辦機(jī)構(gòu),僅北京林業(yè)大學(xué),即本刊的主辦機(jī)構(gòu),就培養(yǎng)了2700名風(fēng)景園林學(xué)碩士生。第三個(gè)原因是在中國(guó)的風(fēng)景園林實(shí)踐還尚未參與到這些新項(xiàng)目中。

        能源轉(zhuǎn)型:?jiǎn)栴}的本質(zhì)和重要性

        對(duì)于這些簽署了巴黎協(xié)定的國(guó)家而言,巴黎協(xié)定意味著到2050年需要減少80-90%當(dāng)量的 CO2排放①。為達(dá)到這一目標(biāo),需要對(duì)整個(gè)能源系統(tǒng)進(jìn)行大規(guī)模的轉(zhuǎn)型。這一轉(zhuǎn)型將對(duì)社會(huì)的每個(gè)角落都帶來(lái)影響。因?yàn)檫@是一個(gè)全球性的任務(wù),使問(wèn)題的本質(zhì)和程度得到理解(且切實(shí)可感?。┑淖詈梅绞娇此剖且粤鞒虉D形式進(jìn)行一種合適的圖解,展現(xiàn)2010年世界總體能源平衡情況。(圖1)

        圖表的好處是作者們②假設(shè)每件事物均是這樣發(fā)生的,且定義每件事物絕對(duì)都如此,即世界中能源的生產(chǎn)和使用能夠最終傳遞到各種終端使用形式。這可能包括農(nóng)業(yè)領(lǐng)域、工業(yè)領(lǐng)域、拐角處的木匠、包裹分發(fā)、采礦業(yè)、集裝箱運(yùn)輸船的航行,這些都可以在能量記錄中當(dāng)作終端使用項(xiàng)。這意味著能量終端是由你和我這樣的人來(lái)使用,類(lèi)別包括家用、取暖、事物、交通、衛(wèi)生、通信、照明、信息技術(shù)等。

        從能源產(chǎn)生到廣泛的能源使用終端,全球能源經(jīng)濟(jì)可以得到步步追蹤?;诖?,除了知道我們正面臨的任務(wù)規(guī)模很大之外,還對(duì)它了解多少?如果能源轉(zhuǎn)型能夠成功完成,這個(gè)模型看起來(lái)將會(huì)或應(yīng)該會(huì)是什么樣?因?yàn)樵谏;鶊D中,線的厚度表明了能源流量的廣泛程度,我們首先需要做的是通過(guò)節(jié)能的方式使整個(gè)圖形變的更薄。節(jié)能是迄今為止最有效的減少 CO2量的方式。節(jié)約1兆瓦意味著可以進(jìn)行減少3兆瓦的發(fā)電。為什么會(huì)有這樣的情況?由于電力泄漏、傳輸、分配、轉(zhuǎn)換所造成的電力損失意味著僅有少于1/3的發(fā)電真正地轉(zhuǎn)變?yōu)橛杏霉ΑA硪粋€(gè)節(jié)能的理由是人類(lèi)能否以一個(gè)可持續(xù)的方式生產(chǎn)人類(lèi)當(dāng)前水平活動(dòng)(474EJ)所需能量的能力受到高度質(zhì)疑。此外,簡(jiǎn)單廉價(jià)的能源時(shí)代已經(jīng)結(jié)束了。盡管目前低價(jià)的石油可能仍然是廉價(jià)的能源,能源投資的回報(bào)(EROI)實(shí)際上在逐漸減少③。這個(gè)社會(huì)為了獲取能源正在消耗越來(lái)越多的能源。

        如果我們想要減少80%的 CO2當(dāng)量,再生能源的比例將不得不顯著增加。之后你可以提出在能源轉(zhuǎn)型中,“發(fā)電”(203EJ)將在“直接燃料使用”上獲得大量的能源收益。這可以通過(guò)未來(lái)社會(huì)的電氣化來(lái)實(shí)現(xiàn),也可以通過(guò)電能的化學(xué)“致密化”(例如轉(zhuǎn)化為氫能)來(lái)實(shí)現(xiàn),這會(huì)使電能在工業(yè)過(guò)程中發(fā)揮更實(shí)用價(jià)值。因此熱量必須在能源轉(zhuǎn)型中承擔(dān)核心角色,但是它卻經(jīng)常被忽視。妥善地處理這些進(jìn)程中的余熱也是能源轉(zhuǎn)型中至關(guān)重要的一部分。通過(guò)利用余熱以及提高燃燒過(guò)程的效率,2/3的損耗是可避免的,這至關(guān)重要,并要系統(tǒng)研究。在圖的最后一行,你可以看到石油能源(由發(fā)動(dòng)機(jī)的運(yùn)行而驅(qū)動(dòng)飛機(jī)、汽車(chē)、卡車(chē)、和船),很可能是轉(zhuǎn)型中最艱難的問(wèn)題。最后,圖形表明我們不應(yīng)該只重視能源終端應(yīng)用。例如,在建筑方面,讓建筑不耗能甚至生產(chǎn)能源是不夠的,也要關(guān)注(圖中的上一步)建筑材料的可持續(xù)性,(圖中的再上一步)以及這些建筑材料的制造過(guò)程中的 CO2足跡。這些努力中的每一步都將取得收益。

        能量和空間:一種難以分解的關(guān)聯(lián)

        就像在阿爾伯特·愛(ài)因斯坦(Albert Einstein)的著名能量守恒公式E=mc2中質(zhì)量和能量是相互關(guān)聯(lián)的一樣,能源和空間之間也相互關(guān)聯(lián)。在人類(lèi)歷史的長(zhǎng)河中,能源使用和空間使用、能源生產(chǎn)和空間設(shè)計(jì)一直存在明顯的相互作用。改造地球,比如挖礦、組織、運(yùn)作、重新設(shè)計(jì),主要能源投入是通過(guò)人類(lèi)和動(dòng)物的肌肉力量和由燃料推助的機(jī)器。相反的,對(duì)于各種能源的產(chǎn)生,空間干預(yù)都是必要的,并且每一種能源的形式都與空間有關(guān)。自從人類(lèi)掌握了火的使用,樹(shù)木甚至整個(gè)森林都被砍伐來(lái)獲得能量。例如煤炭、石油和天然氣這些化石燃料都是“凝固的日光”,他們需要從地球中被釋放,挖出、鉆探和抽出,之后被運(yùn)輸和處理。荷蘭景觀中的溝渠和泥炭堆積就是對(duì)過(guò)去泥炭開(kāi)采的無(wú)聲的見(jiàn)證。露天的褐煤和煤炭礦是最大的人工制品之一。

        在空間和能源的相互關(guān)系中,我們無(wú)法明確地說(shuō)明哪個(gè)是主導(dǎo),哪個(gè)是從屬;也許兩者都是。當(dāng)我們想要按特定方式改變地球,我們會(huì)去尋找合適種類(lèi)和數(shù)量的能源。一旦我們有了獲取大量能源的途徑,我們會(huì)開(kāi)始構(gòu)思以前無(wú)法想象的新的能源應(yīng)用方法。能源和空間可以互相改變彼此,在歷史的進(jìn)程中也是一起改變的。以主導(dǎo)能源形式劃分人類(lèi)歷史并不牽強(qiáng),每個(gè)能源時(shí)期都有自己的空間表現(xiàn)特征。我們可以把從1800年開(kāi)始的這個(gè)階段的特征描述為“化石表現(xiàn)主義”時(shí)代。

        在這個(gè)世紀(jì),我們?cè)僖淮蔚孛媾R能源管理和空間秩序的重大變化。在過(guò)去的兩個(gè)世紀(jì)里,我們的社會(huì)、經(jīng)濟(jì)和世界秩序都是在化石燃料充足的情況下建立的。這對(duì)現(xiàn)存空間的使用、外貌和感知都產(chǎn)生了前所未有的影響。但在未來(lái)的幾十年,不可再生的化石燃料時(shí)代將開(kāi)始萎縮。有充足的理由來(lái)使用其他的能源系統(tǒng),一個(gè)由化石燃料逐步轉(zhuǎn)向多元化的能源結(jié)構(gòu)的系統(tǒng);這個(gè)能源組合將由可再生系統(tǒng)例如風(fēng)能、水電、太陽(yáng)能、余熱和生物能組成。這是一個(gè)巨大的任務(wù):考慮到70到100億的居民,我們需要在棲息地居住和工作的同時(shí)重建我們的棲息地。

        在能源轉(zhuǎn)型的背景下能源和空間之間變化的關(guān)系尚未被廣泛討論??臻g的主要變化之一是,這些再生能源經(jīng)常需要在大范圍內(nèi)進(jìn)行收集;他們的能量密度遠(yuǎn)低于化石燃料。過(guò)去發(fā)電時(shí)只有地平線上的煙囪是可見(jiàn)的,但是這種景象將會(huì)顯著改變。在家庭環(huán)境,在工作的地方,在休閑游覽區(qū):風(fēng)力渦輪機(jī)和太陽(yáng)能板將到處可見(jiàn)。對(duì)這些普遍的新時(shí)期可見(jiàn)標(biāo)識(shí)的適應(yīng)的過(guò)程將會(huì)引起壓力與抗議。

        能源部門(mén)傾向于將空間問(wèn)題視為開(kāi)發(fā)問(wèn)題,而空間規(guī)劃師則通常將能源供應(yīng)看作是超出它們實(shí)際設(shè)計(jì)工作范圍之外的技術(shù)設(shè)備問(wèn)題。因?yàn)槟茉搭I(lǐng)域和空間領(lǐng)域很大程度上各行其是,導(dǎo)致錯(cuò)失了以智慧而令人滿(mǎn)意的方式整合二者的機(jī)會(huì)。

        借由本專(zhuān)輯,我們希望為打破上述僵局做出貢獻(xiàn)。我們想讓能源部門(mén)看到他們工作領(lǐng)域的空間維度。我們也想向空間設(shè)計(jì)者展示能源轉(zhuǎn)型是一個(gè)名副其實(shí)的景觀挑戰(zhàn)。景觀,相比空間來(lái)說(shuō)是一個(gè)定性的概念。它很難被定義,更不用說(shuō)量化了。景觀是一個(gè)豐富的層狀概念,它描述了人與自然的關(guān)系,以及人與人之間的關(guān)系。景觀承載著價(jià)值觀,從個(gè)人記憶到社會(huì)象征。這就是為什么景觀常常成為那些發(fā)生在能源轉(zhuǎn)型與空間之交界地帶的爭(zhēng)論戰(zhàn)場(chǎng)。

        Now that the Paris Agreement has been signed by 195 countries to keep global warming‘well below 2oC’, most of us realize that the actions needed to reach that goal will deeply inf l uence our landscapes and indeed our seascapes. Not only projects that belong to the necessary energy transition, such as wind turbine parks, solar energy fi elds, hydropower complexes, tidal plants, geo-thermal installations, but also re-afforestation projects and biomass production, will gradually change the face of the earth. This will not be easy. Space, in its symbolic and meaning-loaded guise as landscape, will be the battlefield where this transition will be lost or won. It is my conviction that, worldwide, landscape architects will have a role to play.

        To stress that this transition to a decarbonized society needs a global perspective, it seemed a great idea to gather articles from all over the world. We were looking for projects by landscape architects who are active on this new frontier between energy and landscape. We welcomed all kind of projects in our international call through IFLA channels. The projects could be large or small, executed or more analytic, design or research-throughdesign. They might deal with electricity production projects, heat cascading, or producing biomass for fuels, but could also tackle the CO2question by re-afforestation or, more indirectly, by developing policy instruments. Even projects that deal with the cleaning up of fossil fuel landscapes and infrastructure were welcomed, as the reader will observe.

        From Canada, we have a contribution by Kees Lokman (Professor of Landscape Architecture at the University of British Columbia, Vancouver) that shows how the groundbreaking theories on urban metabolism can be applied as a design framework for envisioning low-carbon futures.

        From France, we show work from the ENSP Versailles, with the tutors Auréline Doreau, Bertrand Folléa, and Patrick Moquay, and the studio students Morgane Braouezec, Alice Stevens, Steve Walker, Ophélie Bouvet, Léa Chauvet, Guillemette Dumars, and Adrien Rousseau. This work about positive-energy regions for green growth is not only very interesting in terms of content, but also shows that the ENSP already has a special Chair for Landscape Architecture and Energy. This fact underlines the urgency of this theme in this special issue of 'Landscape Architecture'.

        And fi nally, from the Netherlands, is my own article, a concise sketch of two research-by-design trajectories, Landscape and Energy, on designing the transition on three levels of scale (Europe, the Netherlands, four regions, and individual household), and on the North Sea case about massive offshore wind.

        There are three good reasons to present this first 'tour d’ horizon' from the perspective of the Chinese journal 'Landscape Architecture'. The first is that next to being one of the world largest producers of CO2, China also has the most ambitious programs for the energy transition and spectacular wind and solar energy projects installed. The second reason is that nowhere in the world there are more landscape architects trained then in China. The Beijing Forestry University, the home base of this journal, e.g. alone has 2.700 master students in Landscape Architecture. The third reason is that the practice of Landscape Architecture in China is not yet fully involved in these new commissions.

        Energy transition: the nature and magnitude of the problem

        For those countries that signed the energy agreement, the Paris Agreement means a CO2eq①reduction of between 80-90% by 2050. Achieving this reduction would require a largescale conversion of our entire energy system. This transition will have an impact on the very fabric of society. Because the task is a global one, it seems the best way to make the nature and extent of the problem comprehensible (and tangible!) is an appropriate illustration in the form of a fl ow chart, which shows the overall energy balance of the world in 2010. (Figure 1)

        The nice thing about the chart is that the authors②assume that everything, absolutely everything, that occurs in terms of the world’s production and use of energy can ultimately be passed on to the various forms of end use. That might include agriculture, industrial areas, the carpenter around the corner, packet distribution, mining, or the sailing of container ships; these can all be recorded in the energetic accounting book in terms of their end use. That means end use by people like you and me, in categories such as the home, heating, food, transport, sanitation, communication, lighting, IT, and so on.

        From the sources to the wide range of end users, the global energy economy can be followed step by step. On this basis, what can you say about the task that we are facing except that it is very large? What would, or should, this fi gure look like if the energy transition were to be successfully accomplished? Because the thickness of the lines ina Sankey diagram indicates how extensive the fl ows are, the fi rst action that we would need to undertake is to make the overall fi gure thinner, by means of conservation. Energy saving is by far the most costeffective way of reducing CO2. A saving of 1MW means a difference of 3 MW in terms of energy generation. How can that be the case? Losses resulting from leaks, transmission, distribution, and conversion mean that less than one third of the generated energy is actually converted into useful work. Another argument for conservation is that it is highly questionable whether we will be able to generate all the necessary needed for the current levels of human activity (474 EJ) in a completely sustainable way. Moreover, the era of easy and cheap energy is over. Although the low prices for oil might suggest otherwise, the Energy Return on Energy Invested (EROI) is actually decreasing gradually③. It is costing society more and more energy to get energy.

        If we want to get an 80% reduction in CO2eqthe proportion of ‘renewable’ energy will have to be very signif i cantly increased. You could then propose that in the transition, ‘electricity generation’ (203 EJ) will make substantial gains on‘direct fuel use’ (272 EJ). This can be achieved by the further electrif i cation of society, but also by the chemical ‘densif i cation’ of electricity (for example via conversion to hydrogen), which would make this electricity useful in industrial processes. Heat must therefore assume a central role in the debate about the transition, but it is often neglected. Properly dealing with the residual heat from all of these processes is also a crucial part of the transition. Those two-thirds of losses that can be prevented, for example by using waste heat and by improving the eff i ciency of combustion processes, will have to play a major role, and be systematically investigated. The bottom row of the diagram, where you see the energy source of oil (which is converted by motors to put in motion the passive systems of aircraft, cars, trucks, and ships), could well be the hardest nut to crack in the transition. Finally, the figure shows that we should not only be focusing on the end use. For example, in terms of buildings, it is not only about making buildings energetically-neutral, or even energy-generating, but also (taking a step back in the diagram) about the sustainability of the building materials, and (taking another step back) about the CO2footprint of how those sustainable building materials are manufactured. Gains can be made in each of these steps.

        Energy and space: an indissoluble link

        Just as energy and mass are linked in Albert Einstein’s famous formula E=mc2, energy and space can also be seen in relation to each other. Throughout human history, there has been a notable interaction between the use of energy and the use of space, between the production of energy and spatial design. To work the earth – to mine, to organize, operate, and redesign it – major energy investments have been made, via human and animal muscle power, and also with the help of machines that are powered by fuels. Conversely, for every form of energy generation, spatial interventions are required, and every form of energy has a spatial footprint. Ever since the taming of fi re, trees have been felled, and even entire regions have been deforested to get fuel. Fossil fuels such as coal, oil, and gas are ‘solidif i ed sunshine’, and they need to be released, dug up, drilled, and pumped out of the earth, and then transported and processed. The ditches and peat heaps in the Dutch landscape are the silent witnesses to the peat extraction of the past. Open-pit mines for lignite and coal are among the largest human artefacts.

        In the reciprocal relationship between space and energy, it cannot unambiguously be said which is leading, and which is following; it might be both. When we want to work the earth in a certain way, we look for the appropriate type and amount of energy. And once we have access to a large source of energy, we think of new applications that we previously could not have imagined. Energy and space change each other, and they change together over the course of history. It is not far-fetched to divide human history into periods based on the dominant form of energy, and each energy period also has its own characteristic spatial manifestations. We can characterize the period, beginning around 1800, as the era of ‘fossil expressionism’.

        In this century, we once again face major changes in our energy management and our spatial order. Over the past two centuries, our society, economy, and world order have been built upon an abundance of fossil fuel energy. This has had an unprecedented impact on the use, appearance, and perception of the available space. But in the coming decades, the self-evident nature of the fossil-fuel era will begin to erode. There are compelling reasons to work towards another energy system, one in which fossil fuels will gradually move to the margins of a diverse energy mix; this mix will be dominated by renewable sources such as wind, hydropower, solar energy, residual heat, and biomass. This is a monumental task: we needto rebuild our habitat at the same time that we continue to live and work in it, with our 7 to 10 billion inhabitants.

        The changing relationship between energy and space, in the context of the energy transition, has not yet been extensively discussed. One of the major spatial changes is that these renewable sources often harvest their energy across large areas; their energy density is much lower than that of fossil fuels. It used to be that electricity generation was only visible as a smoke plume on the horizon, but that will change significantly. In the home environment, in the workplace, and in tourist and recreational areas: wind turbines and solar panels will be visible everywhere. The process of getting used to the ubiquity of these visible signs of the new era will lead to tensions and protests.

        The energy sector is inclined to see spatial issues as a development issue, while spatial planners usually see the energy supply as a matter of technical equipment that falls beyond the purview of their actual design work. Because the two perspectives of energy and space largely proceed independently of each other, opportunities are missed to integrate them in an intelligent and desirable way.

        With this special issue, we want to make a contribution to break through that impasse. We want to let the energy sector see the spatial dimension of their work field. And we want to show spatial designers that the energy transition is a genuine landscape challenge. Landscape, more so than space, is a qualitative idea. It is difficult to define, let alone quantify. Landscape is a rich and layered concept that speaks as much to the relationship between humans and nature as it does to the relationship between people themselves. Landscape is loaded with values, from individual memories to social symbols. This is why the landscape is often the battleground for heated discussions that take place at the interface between the energy transition and space.

        Notes:

        ① CO2eq即表示所有的溫室氣體可以被換算的等量的 CO2量。 例如,甲烷的溫室效應(yīng)就是 CO2的25倍,所以CH4相當(dāng)于25 CO2eq。

        CO2eq.: all greenhouse gasses can be expressed in their equivalents of CO2. For instance Methane has a greenhouse effect that is 25 times stronger then CO2. So methane CH4 has 25 CO2eq.

        ② 喬納森 M. 卡倫, 朱利安 M. 奧伍德: 能源的高效利用:跟蹤全球能量流從燃料至能源服務(wù) 能源政策38(2010) 75–81

        Jonathan M.Cullen, Julian M. Allwood The efficient use of Energy: Tracing the global flow of energy from fuel to service Energy Policy 38 (2010) 75–81

        ③ 查爾斯.哈爾和肯特. 莫根斯,能源和國(guó)富論:理解生物物理經(jīng)濟(jì),斯普林格,2011

        Charles Hall & Kent Klitgaard, Energy and the Wealth of Nations: Understanding the Biophysical Economy, Springer, 2011.

        猜你喜歡
        風(fēng)景園林燃料景觀
        歡迎訂閱2023年《風(fēng)景園林》
        住區(qū)(2022年6期)2022-02-15 08:48:02
        景觀別墅
        來(lái)自沙特的新燃料
        生物燃料
        火山塑造景觀
        導(dǎo)彈燃料知多少
        軍事文摘(2020年14期)2020-12-17 06:27:16
        包羅萬(wàn)象的室內(nèi)景觀
        風(fēng)景園林工程施工技術(shù)中常見(jiàn)問(wèn)題思考
        GIS相關(guān)軟件在風(fēng)景園林中的應(yīng)用
        探討現(xiàn)代風(fēng)景園林設(shè)計(jì)中構(gòu)成藝術(shù)的應(yīng)用
        天堂网在线最新版www中文网| 李白姓白白又白类似的套路| 精品无码一区二区三区的天堂| 奇米影视777撸吧| 黄色毛片视频免费| 看全色黄大黄大色免费久久| 亚洲精品中文字幕导航| 日本阿v片在线播放免费| 欧美极品少妇性运交| 两个人免费视频大全毛片| 国产精品亚洲综合久久系列| 日韩av无码久久一区二区| 亚洲精品毛片一区二区三区| 无码专区无码专区视频网址| 在线视频观看一区二区| 狠狠人妻久久久久久综合蜜桃| 四虎成人精品无码永久在线| 国内精品九九久久精品小草| 日韩精品在线观看在线| 狠狠色噜噜狠狠狠777米奇小说| 亚洲欧美日韩一区在线观看| 国产人成在线成免费视频| 人妻少妇久久中中文字幕| 欧美中日韩免费观看网站| 亚洲第一看片| 亚洲精品成人久久av| 精品国产粉嫩内射白浆内射双马尾 | 日韩在线精品免费观看| 亚洲精品成人无限看| 超碰97人人做人人爱少妇| 无码人妻专区一区二区三区| 亚洲日本一区二区三区四区| 日本亚洲欧美色视频在线播放| 国产成人精品三级麻豆 | 天堂资源中文网| 好吊色欧美一区二区三区四区| 日本不卡在线一区二区三区视频| 国产一区二区三区 在线观看| aⅴ精品无码无卡在线观看| 福利在线国产| 亚洲国产丝袜美女在线|