郭金滿,譚超,胡火軍,譚園
?
miRNAs以非細(xì)胞自主機(jī)制參與腫瘤微環(huán)境調(diào)節(jié)的研究進(jìn)展
郭金滿,譚超△,胡火軍,譚園
摘要:腫瘤微環(huán)境是腫瘤發(fā)生發(fā)展過程中所處的內(nèi)環(huán)境,由多種細(xì)胞及細(xì)胞外基質(zhì)組成,是腫瘤形成、轉(zhuǎn)移以及耐藥的關(guān)鍵因素。對(duì)腫瘤微環(huán)境的調(diào)控將成為治療腫瘤的靶點(diǎn)之一。MicroRNAs(miRNAs)是一類21~25個(gè)核苷酸的非編碼單鏈RNA,主要參與基因的表達(dá)調(diào)控。近年來,隨著非細(xì)胞自主抑癌機(jī)制的提出,使miRNAs對(duì)腫瘤微環(huán)境的調(diào)控受到了極大關(guān)注。本文主要闡述miRNAs通過非細(xì)胞自主機(jī)制對(duì)腫瘤微環(huán)境的影響,為對(duì)腫瘤微環(huán)境的深入研究以及腫瘤治療提供參考。
關(guān)鍵詞:微RNAs;腫瘤;微環(huán)境;非細(xì)胞自主性;基因表達(dá)調(diào)控;免疫,細(xì)胞;綜述
△通訊作者E-mail:yczxyytanchao@sina.com
隨著人們對(duì)腫瘤相關(guān)研究的深入,發(fā)現(xiàn)腫瘤細(xì)胞的靶向治療并不等同于腫瘤組織靶向治療,而癌癥的發(fā)生發(fā)展與腫瘤組織及腫瘤細(xì)胞和腫瘤微環(huán)境間的相互作用密切相關(guān)。已有研究證實(shí)腫瘤微環(huán)境對(duì)腫瘤形成、轉(zhuǎn)移以及耐藥的產(chǎn)生至關(guān)重要[1]。MicroRNAs(miRNAs)是一類長(zhǎng)約21~25個(gè)核苷酸的非編碼RNA,主要參與基因的表達(dá)調(diào)控。既往研究大多集中于miRNAs異常表達(dá)對(duì)腫瘤細(xì)胞生物學(xué)行為的影響,隨著抑癌基因p53非細(xì)胞自主抑癌作用分子機(jī)制的提出,使miRNAs對(duì)腫瘤微環(huán)境的調(diào)控受到了極大關(guān)注[2]。本文擬通過闡述miRNAs經(jīng)非細(xì)胞自主機(jī)制對(duì)腫瘤微環(huán)境發(fā)揮的調(diào)控作用,為腫瘤的治療提供參考和干預(yù)靶點(diǎn)。
腫瘤微環(huán)境主要由成纖維細(xì)胞、內(nèi)皮細(xì)胞、免疫細(xì)胞、骨髓來源的間質(zhì)干細(xì)胞、祖細(xì)胞等多種類型細(xì)胞以及周圍的細(xì)胞基質(zhì)組成,具有高度異質(zhì)性。這些細(xì)胞均由正常細(xì)胞轉(zhuǎn)化而來,對(duì)腫瘤形成起重要作用[3]。已經(jīng)證實(shí)多種類型的實(shí)體瘤都伴隨著間質(zhì)細(xì)胞浸潤(rùn)、細(xì)胞外基質(zhì)沉積形成粘連,且腫瘤細(xì)胞持續(xù)生長(zhǎng)可導(dǎo)致間隙液體壓增加,繼而阻礙抗癌藥物的分布[4]。
miRNAs通常由基因間區(qū)或內(nèi)含子區(qū)編碼,經(jīng)RNA聚合酶Ⅱ或Ⅲ轉(zhuǎn)錄而來,大多數(shù)pri-microRNAs在細(xì)胞核內(nèi)被Drosha/DGCR8以及RNaseⅢ剪切成發(fā)卡狀RNAs,釋放入胞漿后進(jìn)一步被RNaseⅢ剪切成長(zhǎng)約21~25個(gè)核苷酸的成熟miRNAs[5]。多種機(jī)制(如染色體缺失、突變,表觀遺傳沉默以及miRNAs原始轉(zhuǎn)錄體轉(zhuǎn)錄障礙等)可導(dǎo)致miRNAs的異常表達(dá),此外miRNAs成熟過程中受損、RNA結(jié)合蛋白LIN28、KH-型剪接調(diào)控蛋白(KSRP)和p53也可調(diào)控miRNAs的表達(dá)[6-7]。
癌癥與基因的異常表達(dá)密切相關(guān),腫瘤微環(huán)境中正常細(xì)胞的改變主要?dú)w因于癌細(xì)胞網(wǎng)絡(luò)調(diào)控基因的功能障礙。例如KRAS基因突變可促使胰腺導(dǎo)管上皮細(xì)胞產(chǎn)生粒細(xì)胞、巨噬細(xì)胞集落成刺激因子,繼而增加髓系來源Gr1 +CD11b+免疫抑制細(xì)胞的聚集,抑制抗腫瘤免疫反應(yīng)[8]。目前研究證實(shí),miRNAs通過非細(xì)胞自主機(jī)制調(diào)控腫瘤微環(huán)境,主要包括對(duì)腫瘤血管生成、上皮間質(zhì)轉(zhuǎn)化(EMT)及腫瘤微環(huán)境中免疫反應(yīng)的調(diào)節(jié)[9]。
2.1miRNAs對(duì)腫瘤血管生成及EMT的調(diào)節(jié)腫瘤血管生成及EMT是腫瘤轉(zhuǎn)移過程中的重要步驟。其發(fā)生過程中存在一系列miRNAs的參與,包括miR-9、miR-126、miR-200、miR-103/107、miR-205、let-7等,目前對(duì)miR-9和miR-126的研究較多[10]。
2.1.1miR-9已有研究證實(shí),miR-9可通過調(diào)控血管內(nèi)皮生長(zhǎng)因子(VEGF)-A來調(diào)節(jié)腫瘤血管生成[11]。miR-9可抑制上皮細(xì)胞鈣黏蛋白(E-cadherin)表達(dá)并增強(qiáng)乳腺癌細(xì)胞的增殖和遷移能力,下調(diào)的E-cadherin同時(shí)激活β-鏈蛋白(βcatenin)信號(hào),進(jìn)而上調(diào)VEGF-A表達(dá)并促進(jìn)腫瘤血管生成[12]。
2.1.2miR-126研究發(fā)現(xiàn)乳腺癌[13]、胃癌[14]和結(jié)腸癌[15]中存在miR-126表達(dá)下調(diào)。Tavazoie等[16]發(fā)現(xiàn),miR-126可通過調(diào)控上皮細(xì)胞募集過程的多個(gè)基因,限制腫瘤細(xì)胞轉(zhuǎn)移。內(nèi)源性miR-126過表達(dá)可抑制乳腺癌結(jié)腸轉(zhuǎn)移,沉默其表達(dá)后的轉(zhuǎn)移結(jié)節(jié)中的血管密集程度增加[17]。進(jìn)一步研究發(fā)現(xiàn),miR- 126分別通過抑制c- mer酪氨酸激酶原癌基因(MERTK)、胰島素樣生長(zhǎng)因子結(jié)合蛋白(IGFBP)2和一個(gè)調(diào)節(jié)基因PITPNC1,從而減少轉(zhuǎn)移細(xì)胞中MERTK受體及IGFBP2的分泌;隨后內(nèi)皮細(xì)胞中下調(diào)的內(nèi)源性miR-126通過增強(qiáng)IGFBP2/IGF1/IGF1R信號(hào)并降低GAS6/MERTK信號(hào)促進(jìn)了內(nèi)皮聚集[17]。包括MERTK、IGFBP2和PITPNC1在內(nèi)的8個(gè)靶基因在乳腺原位癌中過表達(dá),且與未轉(zhuǎn)移期較短有關(guān),稱之為miR-126調(diào)節(jié)因子,它們將miR-126的抗腫瘤轉(zhuǎn)移活性和癌癥與內(nèi)皮的相互作用聯(lián)系起來[17]。另有研究指出,pre-miR-126、miR-126以及miR126*可轉(zhuǎn)化產(chǎn)生miR-126-5p和miR-126-3p兩種成熟miRNA,兩者共同抑制基質(zhì)細(xì)胞衍生因子(SDF)-1α、CXC趨化因子配體(CXCL)12以及CC趨化因子配體(CCL)2的表達(dá),使得間充質(zhì)干細(xì)胞和炎性單核細(xì)胞向腫瘤間質(zhì)募集減弱并最終抑制乳腺癌細(xì)胞肺轉(zhuǎn)移,但目前這種抑制活性僅在腫瘤原發(fā)灶中被觀察到[18]。
2.1.3miR-29b Gata結(jié)合蛋白(GATA)3是維持乳腺導(dǎo)管上皮細(xì)胞生長(zhǎng)及分化所必需的,乳腺導(dǎo)管癌中GATA3表達(dá)下調(diào)與預(yù)后差有關(guān)。最近研究表明,GATA3可誘導(dǎo)miR-29b表達(dá),繼而促進(jìn)乳腺癌細(xì)胞分化、抑制腫瘤轉(zhuǎn)移并改善腫瘤微環(huán)境[19]。細(xì)胞中miR-29b缺失將促進(jìn)腫瘤間質(zhì)表型及轉(zhuǎn)移,miR-29b有許多靶基因,包括VEGF-A、血管生成素樣蛋白(ANGPTL)4、血小板衍化生長(zhǎng)因子(PDGF)、賴氨酰氧化酶(LOX)以及基質(zhì)金屬蛋白酶(MMP)9,這些基因通過參與血管生成、膠原重塑及蛋白水解促進(jìn)腫瘤轉(zhuǎn)移。在小鼠原位乳腺癌中導(dǎo)入miR-29b可減少血管生成及膠原纖維的產(chǎn)生,同時(shí)減少轉(zhuǎn)移發(fā)生率;而再次導(dǎo)入VEGF-1、ANGPTL4、LOX以及MMP9后,miR-29b的抑制效果降低,可見miR-29b靶向調(diào)節(jié)微環(huán)境的重要性[19]。此外,在鼻咽癌中,miR-29c下調(diào)可誘導(dǎo)參與ECM的蛋白包括Ⅰ型膠原α2(COL1A2)、COL3A1、COL4A1及層黏連蛋白γ1等蛋白表達(dá)[20]。
2.2miRNAs對(duì)腫瘤細(xì)胞免疫表型的調(diào)節(jié)在惡性血液腫瘤中,miRNAs表達(dá)改變對(duì)癌細(xì)胞免疫表型調(diào)控以及腫瘤微環(huán)境調(diào)節(jié)有一定作用[21]。例如,退變性大細(xì)胞淋巴瘤(ALCL)中存在miR-135b的高表達(dá),并參與核磷酸蛋白(NPM)-間變性淋巴瘤激酶(ALK)-轉(zhuǎn)錄活化因子(STAT)3下游信號(hào)通路[22]。癌基因NPM-ALK可通過激活STAT3,進(jìn)而促進(jìn)miR-135b及其宿主基因LEMD1的表達(dá)。研究證實(shí),F(xiàn)OXO1是miR-135b的一個(gè)靶基因,進(jìn)一步提示其與NPM-ALK的致癌活性有關(guān)[23]。
另有研究發(fā)現(xiàn)miR-135b可以使白細(xì)胞介素(IL)-17在ALCL細(xì)胞上產(chǎn)生免疫表型,且ALCL免疫表型偏移與Th17細(xì)胞重疊及miR-135b靶向作用于Th2主要調(diào)節(jié)者STAT6、GATA3有關(guān),提示miR-135b在正常淋巴細(xì)胞分化過程中通過擾亂相互對(duì)立的分化程序參與IL-17免疫表型的產(chǎn)生[24]。miR-135b表達(dá)下調(diào)可抑制ALCL細(xì)胞中IL-17A、IL-17F、IkBζ、IL-6以及IL-8的表達(dá),同時(shí)使ALCL中顆粒酶B (granzyme B)和穿孔素(PFP)1表達(dá)減少,細(xì)胞毒性分子高表達(dá),提示miR-135b對(duì)ALCL的免疫表型具有極為廣泛的影響。阻斷miR-135b將減輕ALCL細(xì)胞與纖維母細(xì)胞共培養(yǎng)時(shí)產(chǎn)生的炎癥反應(yīng),并減少腫瘤血管生成、抑制腫瘤體內(nèi)生長(zhǎng)。盡管淋巴瘤免疫表型與正常淋巴細(xì)胞相關(guān)的機(jī)制尚未明確,但致癌激酶相關(guān)miRNAs對(duì)腫瘤免疫表型具有調(diào)節(jié)作用[25]。
2.3miRNAs對(duì)腫瘤微環(huán)境中免疫反應(yīng)的調(diào)節(jié)免疫逃逸反應(yīng)是腫瘤微環(huán)境評(píng)估中的重要方面,根據(jù)腫瘤微環(huán)境的特性,腫瘤免疫逃逸可分為兩類。一類表現(xiàn)為炎性T細(xì)胞浸潤(rùn)并伴有趨化因子,其主要通過一些免疫抑制因子如程序性死亡因子配體(PD-L)1、吲哚胺2,3-雙加氧酶(IDO)以及調(diào)節(jié)性T細(xì)胞等來逃避抗腫瘤免疫反應(yīng)。另一類則缺乏炎性T細(xì)胞,主要通過免疫系統(tǒng)忽視和排斥來阻止免疫系統(tǒng)的攻擊。miRNAs可參與上述兩種機(jī)制引起的腫瘤免疫逃逸[26]。例如,在人黑色素瘤中,miR-30b和miR-39的高表達(dá)與腫瘤的頻繁轉(zhuǎn)移、早期復(fù)發(fā)以及總體生存率降低有關(guān),功能分析顯示miR-30b/-30d直接靶向作用于乙酰氨基葡糖轉(zhuǎn)移酶(GALNT)7并促進(jìn)免疫抑制IL-10的分泌,抑制免疫細(xì)胞活化,促進(jìn)調(diào)節(jié)性T細(xì)胞募集,從而促進(jìn)轉(zhuǎn)移發(fā)生[27]。miR-126/126*對(duì)基質(zhì)細(xì)胞衍生因子1α(SDF-1α)的調(diào)控以及miR-29b對(duì)腫瘤間質(zhì)反應(yīng)的調(diào)節(jié)則與后一種逃逸機(jī)制有關(guān)[18-19]。
miR-34a是p53的轉(zhuǎn)錄靶點(diǎn),是具有代表性的腫瘤抑制miRNAs,其可通過抑制CCL22進(jìn)而抑制調(diào)節(jié)性T細(xì)胞的募集。研究發(fā)現(xiàn),肝組織中乙型肝炎病毒(HBV)持續(xù)感染可增強(qiáng)TGF-β的活性,從而抑制miR-34a表達(dá);在HBV陽(yáng)性的原位癌及門靜脈癌栓組織中,miR-34a與CCL22及核轉(zhuǎn)錄因子FoxP3的表達(dá)水平呈負(fù)相關(guān)[28]。
其他一些miRNAs也參與了腫瘤組織中的免疫反應(yīng)。如在膠質(zhì)瘤中,miR-124表達(dá)下調(diào)與膠質(zhì)瘤干細(xì)胞的免疫抑制活性以及T細(xì)胞的抑制效應(yīng)有關(guān)[29]。乳腺癌細(xì)胞中,miR-17-92集群中的miR-17-5p、miR-20可通過改變IL-8、CK8以及CXCL1的分泌水平來抑制細(xì)胞遷移和侵襲[30]。頭頸部腫瘤中,miR-145可以靶向調(diào)控Y染色體性別決定區(qū)域的相關(guān)促人絕經(jīng)促性腺和基因(SOX)9和解聚素-金屬蛋白酶(ADAM)17,繼而抑制IL-6的產(chǎn)生[31]。
2.4多種miRNAs對(duì)腫瘤微環(huán)境的協(xié)同調(diào)節(jié)miRNAs既可獨(dú)立靶向于抑癌及致癌基因,又可集中作用于腫瘤轉(zhuǎn)移相關(guān)的基因。如在黑色素瘤中,miR-199-5p、miR-199-3p及miR-1908可聯(lián)合促進(jìn)載脂蛋白E(ApoE)分泌,繼而抑制腫瘤細(xì)胞入侵及內(nèi)皮細(xì)胞募集,從而抑制腫瘤轉(zhuǎn)移及血管生成,而在單獨(dú)的miRNAs缺乏產(chǎn)生明顯生物學(xué)效應(yīng)的能力時(shí),多種miRNAs聯(lián)合可能改變閾值,從而實(shí)現(xiàn)腫瘤轉(zhuǎn)移[32]。
綜上所述,miRNAs的這些非細(xì)胞自主效應(yīng)可從多個(gè)方面影響腫瘤微環(huán)境,繼而影響腫瘤的生長(zhǎng)、轉(zhuǎn)移等多種生物學(xué)行為,其調(diào)控腫瘤微環(huán)境作用機(jī)制的明確將為腫瘤地治療提供參考及干預(yù)靶點(diǎn)。
[1] Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment[J]. Curr Opin Cell Biol, 2015,36:13-22. doi:10.1016/j.ceb.2015.06.004.
[2] Lujambio A, Akkari L, Simon J, et al. Non-cell-autonomous tumor suppression by p53[J]. Cell, 2013, 153(2):449-460. doi: 10.1016/j. cell.2013.03.020.
[3] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011,144(5): 646-674. doi: 10.1016/j.cell.2011.02.013.
[4] Junttila MR, de Sauvage FJ. Influence of tumour micro-environ?ment heterogeneity on therapeutic response[J]. Nature, 2013, 501 (7647) : 346-354. doi: 10.1038/nature12626.
[5] Suzuki HI, Miyazono K. Emerging complexity of microRNA generation cascades[J]. J Biochem, 2011,149(1): 15-25. doi: 10.1093/jb/mvq113.
[6] Croce CM. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet, 2009, 10(10): 704- 714. doi: 10.1038/ nrg2634.
[7] Lin RJ, Chien HL, Lin SY, et al. MCPIP1 ribonuclease exhibits broadspectrum antiviral effects through viral RNA binding and degradation [J]. Nucleic Acids Res, 2013 , 41(5): 3314-3326 . doi: 10.1093/nar/ gkt019.
[8] Zhang Y, Yang P, Wang XF. Microenvironmental regulation of can?cer metastasis by miRNAs[J]. Trends Cell Biol ,2014,24(3): 153-160. doi:10.1016/j.tcb.2013.09. 007.
[9] Pencheva N, Tavazoie SF. Control of metastatic progression by mi?croRNA regulatory networks[J]. Nat Cell Biol, 2013,15(6): 546-554. doi:10.1038/ncb2769
[10] Li X, Wu Z, Fu X, et al. A microRNA component of the neoplastic?microenvironment: microregulators with far- reaching impact[J]. Biomed Res Int, 2013,2013: 762183. doi:10.1155/2013/762183.
[11] Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCNactivated microRNA, regulates E-cadherin and cancer metastasis[J]. Nat Cell Biol, 2010,12(3): 247-256. doi:10.1038/ncb2024.
[12] Wentz-Hunter KK, Potashkin JA. The role of miRNAs as key regu? lators in the neoplastic microenvironment[J]. Mol Biol Int, 2011,2011 : 839872. doi: 10.4061/2011/839872.
[13] Feng R, Chen X, Yu Y, et al. miR-126 functions as a tumour sup?pressor in human gastric cancer[J]. Cancer Lett, 2010,298(1): 50-63. doi: 10.1016/j.canlet. 2010.06.004.
[14] Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human mi?croRNAs that suppress breast cancer metastasis[J]. Nature, 2008,451(7175):147-152. doi: 10.1038/nature06487.
[15] Guo C, Sah JF, Beard L, et al. The noncoding RNA, miR-126, sup?presses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers[J]. Genes Chromosomes Cancer, 2008,47(11): 939-946. doi: 10.1002/gcc.20596.
[16] Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human mi?croRNAs that suppress breast cancer metastasis[J]. Nature, 2008,451(7175):147-152. doi: 10.1038/nature06487.
[17] Png KJ, Halberg N, Yoshida M, et al. A microRNA regulon that me?diates endothelial recruitment and metastasis by cancer cells[J]. Na?ture, 2012,481(7380) :190-194. doi: 10.1038/nature10661.
[18] Zhang Y, Yang P, Sun T, et al. miR-126 and miR-126* repress re?cruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis[J]. Nat Cell Biol, 2013,15(3): 284-294. doi: 10.1038/ncb2690.
[19] Chou J, Lin JH, Brenot A, et al. GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression[J]. Nat Cell Biol , 2013,15(2): 201 - 213. doi: 10.1038/ncb2672.
[20] Sengupta S, den Boon JA, Chen IH, et al. MicroRNA 29c is downregulated in nasopharyngeal carcinomas, up-regulating mRNAs en?coding extracellular matrix proteins[J]. Proc Natl Acad Sci USA, 2008,105:5874-5878. doi: 10.1073/pnas. 0801130105.
[21] Matsuyama H, Suzuki HI, Nishimori H, et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing im?munophenotype to anaplastic large cell lymphoma[J]. Blood, 2011,118(26):6881 -6892. doi: 10.1182/blood-2011-05-354654.
[22] Sarver AL, French AJ, Borralho PM, et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states[J]. BMC Cancer, 2009,9: 401. doi: 10.1186/1471-2407-9-401.
[23] Lin CW, Chang YL, Chang YC, et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1[J]. Nat Commun, 2013,4: 1877. doi: 10.1038/ ncomms2876.
[24] Harrington LE , Hatton RD , Mangan PR, et al. Interleukin 17-pro?ducing CD4+effector T cells develo p via a lineage d istinct from the T helper type 1 and 2 line ages[J]. Nat Immunol, 2005, 6(11): 1123-1132. doi:10.1038/nri1737.
[25] van Hamburg JP, Mus AM, de Bruijn MJ, et al. GATA-3 protects against severe joint inflammation and bone erosion and reduces dif?ferentiation of Th17 cells during experimental arthritis[J]. Arthritis Rheum, 2009,60(3): 750-759. doi: 10.1002/art.24329.
[26] Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment[J]. Nat Immunol, 2013, 14(10): 1014-1022. doi: 10.1038/ni. 2703.
[27] Gaziel-Sovran A, Segura MF, Di Micco R, et al. miR-30b/30d regu?lation of GalNAc transferases enhances invasion and immunosup?pression during metastasis[J]. Cancer Cell, 2011,20(1):104-118. doi: 10.1016/j.ccr.2011.05.027.
[28] Yang P, Li QJ, Feng Y, et al. TGF-beta-miR-34aCCL22 signalinginduced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma[J]. Cancer Cell, 2012,22(3): 291 -303. doi: 10.1016/j.ccr.2012.07.023.
[29] Wei J, Wang F, Kong LY, et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma[J]. Cancer Res, 2013,73(13): 3913-3926. doi: 10.1158/0008-5472.CAN-12-4318.
[30] Yu Z, Willmarth NE, Zhou J, et al. microRNA 17/20 inhibits cellu?lar invasion and tumor metastasis in breast cancer by heterotypic signaling[J]. Proc Natl Acad Sci USA, 2010,107(18): 8231-8236. doi: 10.1073/pnas.1002080107.
[31] Yu CC, Tsai LL, Wang ML, et al. miR145 targets the SOX9/AD?AM17 axis to inhibit tumor- initiating cells and IL- 6- mediated paracrine effects in head and neck cancer[J]. Cancer Res, 2013, 73 (11): 3425-3440. doi: 10.1158/0008-5472.CAN- 12-3840.
[32] Pencheva N, Tran H, Buss C, et al. Convergent multi-miRNA target?ing of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis[J]. Cell, 2012, 151(5) : 1068-1082.doi: 10.1016/j. cell.2012.10.028.
(2015-07-01收稿2015-09-18修回)
(本文編輯胡小寧)
作者單位:湖北宜昌,三峽大學(xué)第一臨床醫(yī)學(xué)院(郵編443002)
Research progress of MicroRNAs involved in the tumor microenvironment regulation in non-cell-autonomous mechanisms
GUO Jinman, TAN Chao△, HU Huojun, TAN Yuan
The First Clinical Medical College, China Three Gorges University, Yichang 443002, China
△Corresponding Author E-mail: yczxyytanchao@sina.com
Abstract:As an internal environment of tumor occurrence, tumor microenvironment is composed of a variety of cells and extracellular matrix, and plays a crucial role in tumor formation, transfer and resistance to drugs. The regulation of tumor microenvironment will be a potential target to control the cancer. MicroRNAs (miRNAs) are a kind of 21 to 25 nucleotides single-stranded RNA, and are mainly involved in regulating gene expression. Recently, with the suggestion of cellular auton?omous tumor inhibition mechanism, the regulation of tumor microenvironment by miRNAs has received great attention. This review summarizes recent findings on the non-cell-autonomous mechanisms of miRNAs-mediated regulation of tumor micro?environments, which provides foundations and perspective on the design of therapeutic interventions.
Key words:microRNAs; tumor;microenvironment; non-cell-autonomous function;gene expression regulation;immu?nity, cellular;review
中圖分類號(hào):R730.3
文獻(xiàn)標(biāo)志碼:A
DOI:10.11958/59124
基金項(xiàng)目:湖北省自然科學(xué)基金資助項(xiàng)目(2014CFB307)
作者簡(jiǎn)介:郭金滿(1975),男,副主任醫(yī)師,學(xué)士,主要從事神經(jīng)外科及腫瘤方面研究