劉妍妍,程雨晴,譚 楨,郭 賓
(湖南師范大學(xué) 化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,化學(xué)化工學(xué)院,湖南 長(zhǎng)沙 410081)
?
藥物代謝細(xì)胞色素酶催化活性檢測(cè)新技術(shù)進(jìn)展
劉妍妍,程雨晴,譚楨,郭賓*
(湖南師范大學(xué) 化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,化學(xué)化工學(xué)院,湖南 長(zhǎng)沙 410081)
摘要:細(xì)胞色素P450單加氧酶(CYP)能高效地催化種類繁多、結(jié)構(gòu)迥異有機(jī)化合物的氧化反應(yīng),特別是非活性碳?xì)浞肿拥膯尾逖醴磻?yīng),被譽(yù)為自然界的萬(wàn)能催化劑和機(jī)體最重要的藥物解毒酶. 本文作者對(duì)傳統(tǒng)的CYP酶活性檢測(cè)技術(shù)與若干新型分析方法的進(jìn)展情況進(jìn)行簡(jiǎn)要評(píng)述, 主要綜述了近年來(lái)出現(xiàn)的非傳統(tǒng)代謝酶活性快速檢測(cè)技術(shù),如通過(guò)監(jiān)測(cè)代謝反應(yīng)過(guò)程中的氧氣、輔酶或中間活性產(chǎn)物的變化,特別是采用電化學(xué)驅(qū)動(dòng)電子轉(zhuǎn)移、納米雜化CYP替代酶源材料等交叉學(xué)科新方法,為發(fā)展新型CYP活性分析技術(shù)、深入探討CYP催化反應(yīng)機(jī)理提供新的思路.
關(guān)鍵詞:細(xì)胞色素P450;藥物代謝;酶活性分析;技術(shù)進(jìn)展
細(xì)胞色素P450(cytochrome P450,簡(jiǎn)稱CYP)為一類亞鐵血紅素-硫醇鹽蛋白的超家族,廣泛存在于進(jìn)化譜系從細(xì)菌到人的所有生物體中. CYP在人體中主要存在于肝臟細(xì)胞的內(nèi)質(zhì)網(wǎng)膜上,參與眾多外源性化學(xué)異物(包括藥物、工業(yè)化合物和環(huán)境污染物等)的氧化代謝以及內(nèi)源性信號(hào)物質(zhì)的合成[1]. CYP同工酶能通過(guò)其活性中心的血紅素中的鐵離子傳遞電子(電子由NADPH經(jīng)CYP還原酶?jìng)鬟f至血紅素催化中心),利用氧分子和輔酶NADPH的電子氧化各種異源物. CYP酶系催化氧化代謝的化學(xué)機(jī)制十分復(fù)雜,一個(gè)催化循環(huán)大致需經(jīng)6~9個(gè)反應(yīng)步驟(圖1):含F(xiàn)e3+的CYP與藥物分子RH結(jié)合(①),接受從NADPH-CYP還原酶?jìng)鬟f的一個(gè)電子(②),使鐵轉(zhuǎn)變?yōu)镕e2+離子;隨之與一分子氧結(jié)合(③),接受第二個(gè)電子(④),再加合一個(gè)質(zhì)子(⑤),形成Fe2+OOH·RH復(fù)合物;該復(fù)合物與另一個(gè)質(zhì)子結(jié)合,產(chǎn)生H2O和鐵氧復(fù)合物 (FeO)3+·RH(⑥);鐵氧復(fù)合物從RH中提取氫原子,形成一對(duì)短暫的自由基(⑦),最后氧化型藥物ROH從復(fù)合物中釋放,CYP酶再生(⑧)[2-4].
圖1 CYP酶催化底物氧化通用循環(huán)路徑示意圖Fig.1 The general circulation path diagram of CYP enzyme catalytic substrate oxidation
CYPs催化的典型氧化反應(yīng)可用以下總反應(yīng)式簡(jiǎn)單表示:
(1)
式中RH和ROH分別代表藥物底物和氧化代謝產(chǎn)物;氧分子中的1個(gè)氧原子加入到底物分子中,另1個(gè)氧原子與來(lái)源于NADPH的氫和溶液中的H+形成1分子水,底物則被氧化成極性較強(qiáng)的代謝物以利于機(jī)體清除. 據(jù)最新統(tǒng)計(jì),CYPs負(fù)責(zé)人體90%以上藥物的解毒和代謝[5]. 但值得注意的是,某些結(jié)構(gòu)的藥物也能被CYP代謝活化,形成更強(qiáng)活性、高反應(yīng)性或毒性的代謝產(chǎn)物[6-7]. 因此,準(zhǔn)確、快速地測(cè)定和表征藥酶催化活性對(duì)解析藥物毒效機(jī)理、優(yōu)化篩選化合物類藥物屬性以及評(píng)估藥物代謝性相互作用具有十分重要的意義[8-12].
目前常規(guī)的酶活分析方法一般通過(guò)考察體外代謝體系(如肝勻漿、微粒體、肝細(xì)胞等)中產(chǎn)物的增加或底物的減少來(lái)測(cè)定酶催化反應(yīng)動(dòng)力學(xué). 根據(jù)式(1),除檢測(cè)代謝物的生成速率或底物的消耗量,還可以嘗試通過(guò)控制各種條件來(lái)監(jiān)測(cè)反應(yīng)過(guò)程中的氧氣、輔酶或中間產(chǎn)物的變化來(lái)評(píng)估代謝過(guò)程中CYP酶的催化活性[13]. 最近出現(xiàn)了采用電化學(xué)驅(qū)動(dòng)電子轉(zhuǎn)移、納米雜化CYP酶源材料等新型分析方法. 本文作者對(duì)傳統(tǒng)的CYP酶活檢測(cè)技術(shù)與若干新型分析方法的進(jìn)展情況進(jìn)行了簡(jiǎn)要評(píng)述.
1CYP酶活性檢測(cè)技術(shù)的新進(jìn)展
提高CYP酶活篩選通量的途徑之一是采用快速檢測(cè)技術(shù),如多孔酶標(biāo)板的高通量光譜分析技術(shù)[14]. 一般來(lái)說(shuō),熒光篩選體系具有高靈敏度、高通量?jī)?yōu)勢(shì)[15]. 在基于熒光的篩選體系中,常使用香豆素衍生物. P450BM3單加氧酶具有很寬的底物范圍,而且工業(yè)應(yīng)用潛力大,故被選為模型單加氧酶. RUFF等[16]發(fā)展了一種基于7-苯酰氧基-3-羧基香豆素乙酯(BCCE)的高通量流式細(xì)胞篩選平臺(tái),BCCE通過(guò)P450BM3的O-脫烷基化作用產(chǎn)生熒光香豆素衍生物,表現(xiàn)出可檢測(cè)的熒光(λex= 400 nm,λem= 440 nm),可用于篩選和富集最高活性的BM3變異體群體,以證實(shí)BCCE流式細(xì)胞分析儀可以利用熒光進(jìn)行酶活性篩選. BCCE熒光篩選體系的一個(gè)主要優(yōu)勢(shì)是全細(xì)胞(大腸桿菌)的直接分類,其簡(jiǎn)化了篩選步驟. 這種篩選體系不僅適用于在大腸桿菌中表達(dá)和催化香豆素衍生物O-脫烷基化的所有CYP單加氧酶,而且還能用于纖維素酶、脂酶、磷酸酯酶的定向進(jìn)化和宏基因組庫(kù)的篩選.
由于熒光底物具有反應(yīng)差異性[17],不是最理想的CYP底物;而且反應(yīng)體系中復(fù)雜組分會(huì)對(duì)產(chǎn)物的熒光信號(hào)產(chǎn)生檢測(cè)干擾,檢測(cè)前的分離有時(shí)是必不可少的,如毛細(xì)管電泳[18]. 目前,采用常規(guī)探針?biāo)幬锏囊合嗌V-質(zhì)譜聯(lián)用技術(shù)(LC-MS) 為推薦的首選分析方法. 為促進(jìn)LC-MS 的篩選效率,出現(xiàn)了許多新的改進(jìn)技術(shù),如自動(dòng)化操作或快速柱切換分離[19]、底物混合式孵育[20-22]、化學(xué)衍生和同位素探針底物[23]等. 提高LC-MS 分析通量的另一個(gè)簡(jiǎn)單途徑是將樣品以流動(dòng)注射(FI) 方式直接注入質(zhì)譜儀進(jìn)行快速分析,以免去耗時(shí)的色譜分離過(guò)程和降低流動(dòng)相變化對(duì)質(zhì)譜檢測(cè)的影響. 近期報(bào)道的流動(dòng)注射-串聯(lián)質(zhì)譜技術(shù)(FI-MS/MS) 可用于中藥提取物對(duì)人體主要P450 酶抑制效應(yīng)的快速篩選與分類,為多組分體系復(fù)雜藥代相互作用的研究和評(píng)估提供一種有效手段[24]. 一些新型的敞開(kāi)式離子化技術(shù)如laser diode thermal desorption (LDTD)[25-26],將為實(shí)現(xiàn)質(zhì)譜的實(shí)時(shí)分析提供一種新的手段.
常規(guī)的產(chǎn)物生成法需要測(cè)定一系列底物濃度下特定產(chǎn)物的生成初速率,然后通過(guò)米氏方程曲線的線性回歸或非線性擬合來(lái)計(jì)算動(dòng)力學(xué)參數(shù). 因傳統(tǒng)產(chǎn)物生成法需要預(yù)先確定藥物的代謝路徑和提供代謝物標(biāo)準(zhǔn)品,而許多情況下藥物的代謝物結(jié)構(gòu)不明或其標(biāo)準(zhǔn)品難以獲得,因此底物消除法已被廣泛應(yīng)用于復(fù)雜轉(zhuǎn)化途徑下CYP表觀動(dòng)力學(xué)參數(shù)的快速測(cè)定[27-31].
OBACH等[32]最初采用單底物濃度法即“體外半衰期”法快速估算藥物代謝的內(nèi)在清除率(CLint),隨后基于非線性擬合的多底物濃度消除法即“多衰減曲線”法被進(jìn)一步應(yīng)用于計(jì)算CYP酶促反應(yīng)動(dòng)力學(xué)參數(shù)包括米氏常數(shù)(Km), 最大反應(yīng)速率(Vmax)和CLint. 為了更直觀地獲得這些參數(shù),郭賓課題組從理論上推導(dǎo)了基于藥物多衰減曲線的酶促反應(yīng)的線性方程,提出了線性轉(zhuǎn)換求解酶動(dòng)力學(xué)參數(shù)的新方法[33],通過(guò)與傳統(tǒng)的底物消除曲線擬合法進(jìn)行比較,驗(yàn)證了新方法的有效性,即多衰減曲線線性作圖是一種簡(jiǎn)便、直觀、可靠的數(shù)據(jù)可視化處理方法. 另外,關(guān)于底物消除法的有效性,NATH等[29]對(duì)其進(jìn)行了理論驗(yàn)證,YOUDIM 等[31]證實(shí)了底物消耗法不僅適用于CYP重組酶,還可用于微粒體混合酶動(dòng)力學(xué)參數(shù)的測(cè)定,但某些藥物如地昔帕明等,采用底物消除法的測(cè)定結(jié)果與傳統(tǒng)的產(chǎn)物生成法相比仍有較大偏差. 郭賓課題組在進(jìn)一步探究產(chǎn)生差異的原因時(shí)發(fā)現(xiàn),對(duì)特異性強(qiáng)的探針?biāo)幬铮瑑煞N方法結(jié)果一致,只要選擇合適底物探針和數(shù)據(jù)處理方案,底物消耗法是一種可靠、簡(jiǎn)便測(cè)定微粒體酶動(dòng)力學(xué)參數(shù)的方法[34].
2CYP活性檢測(cè)新型方法
非常規(guī)的高通量CYP活性檢測(cè)方法包括:NADPH消耗、氧消耗、氫過(guò)氧化物消耗以及活性氧(ROS)生成分析[13]. 由于這類方法不涉及具體結(jié)構(gòu)的藥物底物和代謝產(chǎn)物,可大幅提高檢測(cè)的通用性與分析通量. 然而NADPH的消耗量不完全依賴于底物的代謝反應(yīng),原因可能是:1)NADPH被CYP 還原而非直接被CYP氧化;2)電子轉(zhuǎn)移至CYP活性中心會(huì)引起底物的氧化、ROS的產(chǎn)生或氧還原生成水. 此外,反應(yīng)中輔酶需過(guò)量添加,其消耗量的測(cè)量誤差較大. 氧耗檢測(cè)法的優(yōu)點(diǎn)是基于CYP催化反應(yīng)中的氧的消耗量與被代謝的藥物量之間的比例關(guān)系,采用對(duì)氧敏感的96孔板熒光材料實(shí)現(xiàn)高通量篩選,缺點(diǎn)是靈敏度和專一性不高. CYP催化反應(yīng)中還會(huì)產(chǎn)生一系列ROS中間產(chǎn)物,如超氧化物、過(guò)氧化氫和羥自由基(圖1). 假定底物轉(zhuǎn)化與ROS產(chǎn)生有量化關(guān)系,不穩(wěn)定的ROS可以與特定結(jié)構(gòu)的化合物生成熒光產(chǎn)物,則可通過(guò)監(jiān)測(cè)熒光探針來(lái)進(jìn)行代謝穩(wěn)定性的快速篩選. CYP催化反應(yīng)中,氧化劑如過(guò)氧酸和氫過(guò)氧化物等可替代氧源和電子供體,即可直接通過(guò)一個(gè)peroxide shunt代謝旁路來(lái)進(jìn)行氧化[35].
圖2 基于氧耗熒光傳感的CYP陣列(a)和芯片裝置(b)Fig.2 The CYP array (a) and chip device (b) of fluorescence sensor based on the oxygen consumption
(2)
(3)
通過(guò)同時(shí)監(jiān)測(cè)O2和NADPH的熒光強(qiáng)度,建立了一種準(zhǔn)確、高效的CYP代謝穩(wěn)定性分析平臺(tái)——MesaPlate.
氧氣消耗(還原)也可通過(guò)循環(huán)伏安圖(CV)來(lái)表征. CYP催化藥物代謝通過(guò)細(xì)胞色素b5和依賴NAD(P)H的 CYP還原酶的電子轉(zhuǎn)移. 但用未修飾的電極(玻碳電極或金電極)檢測(cè)CYP的電催化活性很困難,因此可采用表面修飾和酶固定技術(shù)來(lái)構(gòu)建一個(gè)簡(jiǎn)單和高通量的CYP藥物代謝生物傳感器,測(cè)試電極和CYP之間的直接電子轉(zhuǎn)移. 藥物發(fā)生氧化時(shí)因CYP的單加氧酶活性,氧還原電流顯著增加;反之,在有CYP抑制劑存在時(shí),氧還原電流降低或完全消失. 由此可通過(guò)CV圖上氧還原電流峰來(lái)評(píng)估CYP的活性. YOSHIOKA等[40]用單一CYP3A4酶(無(wú)CYP還原酶或細(xì)胞色素b5)修飾的多晶氧化銦錫膜構(gòu)成電化學(xué)生物傳感器,當(dāng)添加底物藥物(睪酮和奎尼丁),氧化過(guò)程消耗氧氣時(shí),在多晶的氧化銦錫膜電極上氧氣還原電流增加了3~4倍;而在存在酮康唑(3A4的抑制劑)時(shí),氧還原電流完全消失. GILARDI課題組[41]在修飾的玻碳電極或金電極上進(jìn)行了CYP2E1的直接電子轉(zhuǎn)移測(cè)量,利用基因工程技術(shù)構(gòu)建了CYP和CYP還原酶的嵌合體分子來(lái)促進(jìn)它的電子轉(zhuǎn)移. MIE等[42]報(bào)道了在衛(wèi)生球硫醇鹽修飾的金電極上微粒體CYP3A4的直接電子轉(zhuǎn)移測(cè)量,用于CYP底物或抑制劑的作用研究. 因此,可采用不同的材料和方法修飾電極,通過(guò)控制CYP的位置或形成電子轉(zhuǎn)移的路徑來(lái)改善直接電子轉(zhuǎn)移,檢測(cè)代謝酶的活性.
CYP催化藥物代謝反應(yīng)除了產(chǎn)生一系列活潑的ROS中間產(chǎn)物[4],還會(huì)發(fā)生活化作用形成反應(yīng)性的代謝產(chǎn)物. 這類反應(yīng)性物質(zhì)具備高化學(xué)反應(yīng)活性、半衰期短、豐度低而難以被直接檢測(cè),故一般采用捕獲試劑與它們反應(yīng)形成穩(wěn)定的加合物后再進(jìn)行譜學(xué)表征[43-45]. 內(nèi)源性生物分子如多肽、蛋白和DNA均能與反應(yīng)性代謝物發(fā)生共價(jià)結(jié)合,是常用的捕獲試劑,其中DNA性質(zhì)穩(wěn)定、易于組裝和構(gòu)建高通量篩選系統(tǒng).
康涅狄格大學(xué)的RUSLING研究小組在CYP酶-DNA生物反應(yīng)器組裝及其在藥物代謝DNA損傷生物傳感、基因毒性篩選應(yīng)用方面開(kāi)展了系統(tǒng)而卓有成效的研究工作. 檢測(cè)的基本原理是:CYP催化體系與DNA組裝在薄膜上,藥(毒)物經(jīng)CYP酶活化產(chǎn)生反應(yīng)性代謝物,通過(guò)與膜上的DNA堿基反應(yīng)被俘獲,破壞(氧化)后的DNA產(chǎn)物采用電化學(xué)傳感器如方波電壓(SWV)或質(zhì)譜檢測(cè),從而獲得CYP酶動(dòng)力學(xué)參數(shù)和DNA損傷相關(guān)的定性或結(jié)構(gòu)信息[46].
在熱解石墨電極表面,研究者通過(guò)層層組裝P450cam和雙鏈DNA薄膜(20~40 nm),CYP催化苯乙烯活化,反應(yīng)性產(chǎn)物在位氧化DNA,被破壞的DNA則可經(jīng)Ru(bpy)32+催化氧化(主要是鳥(niǎo)嘌呤)介導(dǎo)的電化學(xué)檢測(cè)來(lái)進(jìn)行藥物的毒性篩選[47];基于 CYP/DNA的電化學(xué)生物傳感器被用于CYP酶抑制常數(shù)的測(cè)定[48]. 隨后,電極表面組裝微粒體(microsome)/DNA膜也被證實(shí)可有效模擬肝臟氧化代謝反應(yīng)[49]. 在此基礎(chǔ)上,研究者在熱解石墨芯片上組裝釕復(fù)合物[Ru(bpy)2PVP10]2+、DNA、人肝細(xì)胞胞質(zhì)溶膠和微粒體組成電化學(xué)發(fā)光(ECL)陣列[50],DNA因與反應(yīng)性代謝物結(jié)合形成核堿基加和物而變得無(wú)序,釕金屬?gòu)?fù)合物能提供更好的光學(xué)信號(hào)[51],故可用于監(jiān)測(cè)體外單個(gè)或連續(xù)的代謝生物活化,來(lái)篩選通過(guò)生物氧化或非氧化結(jié)合的反應(yīng)性代謝物[52]. 該研究小組在電極上固定了CYPs 和CYP還原酶(CPR),用氧化還原電位、電子轉(zhuǎn)移速率和底物轉(zhuǎn)換速率等證實(shí)了電子從電極到CPR,再到CYP,第一次電化學(xué)探測(cè)了CYP和CPR之間的相互作用,有效地模擬了酶催化的路徑[53]. 設(shè)計(jì)成微流體電化學(xué)陣列或ECL芯片,可進(jìn)一步提高毒性篩選通量[54-56]. 微流體陣列比基于相同原則的單電極傳感器有更好的信噪比和重現(xiàn)性,縮短了分析時(shí)間并使藥物反應(yīng)體積進(jìn)一步微型化.
除了基于ECL檢測(cè)的快速篩選,DNA/enzyme生物膠體反應(yīng)器微陣列還可與LC-MS技術(shù)聯(lián)用,以解決代謝產(chǎn)物和DNA堿基加合物的結(jié)構(gòu)鑒定及反應(yīng)定量問(wèn)題[46, 57-59]. 在此基礎(chǔ)上,RUSLING 研究組將CYP/DNA復(fù)合生物反應(yīng)器與高通量的96孔板結(jié)合起來(lái),明顯縮短了樣品制備步驟,而且能使一系列同工酶反應(yīng)同時(shí)進(jìn)行[60]. 為使核堿基加合物的制備和清洗更簡(jiǎn)單、快速,研究者在磁性顆粒表面通過(guò)靜電作用層層組裝細(xì)胞質(zhì)基質(zhì)、微粒體和DNA的薄膜構(gòu)成磁性生物膠體反應(yīng)器,并結(jié)合了96孔板技術(shù)和LC-MS/MS建立了一種廉價(jià)的、高通量基因毒性篩選方法[61]. 最近研究者還把磁性生物膠體反應(yīng)器結(jié)合LC-MS法應(yīng)用到檢測(cè)和識(shí)別無(wú)標(biāo)記的代謝物-蛋白質(zhì)加合物中[62].
3CYP固定雜化酶源材料及新型分析技術(shù)
大多數(shù)有關(guān)CYP活性分析都是在液相多孔板上進(jìn)行的,也有人采用物理法或共價(jià)法固定CYP以提高酶的穩(wěn)定性[63-64]. 將CYP酶或微粒體固定于多孔疏松的基質(zhì)(如溶膠)上可以減少樣品用量,也可重復(fù)維持酶的催化活性和簡(jiǎn)化樣品處理;將酶用溶膠或凝膠包埋于多孔板上,可進(jìn)一步構(gòu)建生物催化活性高通量的微陣列篩選技術(shù)平臺(tái)[65]. 最近的研究發(fā)現(xiàn),將CYP固定在一些電化學(xué)活性新材料上還可以改善其催化特性.
CYP催化藥物代謝是依賴電子轉(zhuǎn)移的氧化反應(yīng),而電化學(xué)是用于引發(fā)氧化反應(yīng)的經(jīng)典手段. 因此,早在上世紀(jì)80年代SHONO等報(bào)道了對(duì)電化學(xué)和CYP催化氧化反應(yīng)機(jī)理的比較研究,開(kāi)始引起研究者極大的興趣. 此外,因傳遞電子所需,CYP還原蛋白在絕大多數(shù)P450的催化反應(yīng)中不可或缺. 傳統(tǒng)觀念認(rèn)為改變CYP酶的還原伴侶僅會(huì)影響其催化效率及產(chǎn)物分布,不會(huì)改變催化反應(yīng)類型,也不會(huì)產(chǎn)生新代謝產(chǎn)物,因此在眾多CYP酶的酶學(xué)研究和工業(yè)應(yīng)用中,常常借助一些非天然還原伴侶蛋白來(lái)替代或模擬還原伴侶的角色. 然而,最近發(fā)現(xiàn)還原蛋白在決定CYP酶催化功能方面也可能起重要作用[66-68]. 目前,電化學(xué)仿生模擬代謝技術(shù)是把具備模擬某些氧化代謝潛力的電化學(xué)池與強(qiáng)大的LC-MS高通量檢測(cè)手段在線連接,是一種有前景的用于模擬肝臟氧化過(guò)程,研究藥物體外代謝活性的新分析策略.
WASALATHANTHRI等[55]構(gòu)建了一個(gè)用電化學(xué)驅(qū)動(dòng)替代過(guò)氧化氫或NADPH提供電子的CYP催化電化學(xué)微流體陣列裝置,成功用于反應(yīng)性代謝物的快速篩選. XU等[69]把導(dǎo)電性好的銦錫氧化物納米顆粒和生物相容性好的殼聚糖結(jié)合起來(lái),將銦錫氧化物納米顆粒和CYP2C9微粒體通過(guò)殼聚糖封裝在一個(gè)玻碳電極上,用于驅(qū)動(dòng)藥物代謝過(guò)程,電化學(xué)驅(qū)動(dòng)藥物代謝的產(chǎn)物用LC-MS檢測(cè). 膜中的銦錫氧化物納米顆粒在電極與微粒體蛋白質(zhì)的活性位點(diǎn)之間的電子傳遞中起著非常重要的作用,CPR使CYP2C9的氧化更容易. DODHIA等[70]發(fā)現(xiàn)CPR、黃素氧化還原蛋白和CYP3A4的基因融合還原酶能提高CYP3A4的催化活性. FANTUZZI等[71]在8孔微量板底部通過(guò)自組裝單層把CYP3A4、2D6、2C9共價(jià)鍵合到微量板中的金電極上,快速準(zhǔn)確地測(cè)定了一系列已知藥物的酶動(dòng)力學(xué)參數(shù)Km.
BAJRAMI等[58]把鼠肝微粒體附加到納米顆粒上用于CYP3A和2E1酶在N-nitroso化合物代謝的LC-MS研究中. 他們還構(gòu)建了涂有DNA和酶的二氧化硅微珠生物反應(yīng)器(直徑0.5 μm)來(lái)測(cè)試活性代謝物和與基因毒性篩選有關(guān)的DNA加合物的生成速率[72]. KANEMURA等引入噴墨打印技術(shù),將CYPs多酶與一同噴出的瓊脂經(jīng)糖凝膠化固定在反應(yīng)板微孔中制備CYP微陣列芯片[38]. 在納米顆粒上固定微粒體,小尺寸的生物膠體增加了活性表面積,在小反應(yīng)體積中集中了大數(shù)量的酶,單位時(shí)間獲得的產(chǎn)物更多,比單獨(dú)使用微粒體的代謝速率快60%~70%. 微粒體-生物膠體納米反應(yīng)器可以實(shí)現(xiàn)化合物代謝及其抑制的快速、準(zhǔn)確評(píng)估. 值得注意的是,在微粒體代謝孵育體系中,某些納米粒子的存在也會(huì)對(duì)CYP亞型酶活性產(chǎn)生不同程度的抑制[73-74].
量子點(diǎn)(QD)是一種新型熒光納米探針,同時(shí)也是一種光敏電化學(xué)活性材料. 鑒于生物催化劑酶的尺度范圍和QD相近,兩者易于復(fù)合,因此將酶和QD復(fù)合的雜化材料擁有兩種組分的本征反應(yīng)性和獨(dú)特的催化性能. 例如,IPE等發(fā)現(xiàn)把CYP和CdS量子點(diǎn)復(fù)合制備的納米雜化材料,紫外光照下CdS QD會(huì)產(chǎn)生超氧化物和羥基自由基,從而活化消耗氧的CYP酶,促進(jìn)藥物的代謝反應(yīng)[75];CYP/CdS量子點(diǎn)復(fù)合雜化納米材料也可利用紫外光來(lái)控制雜化材料的光催化活性[76]. 基于光誘導(dǎo)電子從QD轉(zhuǎn)移至CYP的原理,XU等通過(guò)CYP2C9功能化修飾CdTe量子點(diǎn)成功制備了一種光控藥物代謝催化劑[77]. 在前期基礎(chǔ)上,最近PARK等進(jìn)一步構(gòu)建了免輔酶、細(xì)胞內(nèi)、可見(jiàn)光驅(qū)動(dòng)的CYP多酶代謝反應(yīng)系統(tǒng)[78]. 此外,新型納米材料如氧化銦錫薄膜[40]、膠體金/石墨烯復(fù)合材料[79]以及石墨烯電極[80]的應(yīng)用可調(diào)控CYP的表面組裝行為并形成新的電子傳輸鏈. WANG等發(fā)現(xiàn)利用ZnO納米線的壓電效應(yīng)也可以提高CYP復(fù)合催化劑的藥物代謝效能[81]. LU等[82]通過(guò)靜電吸附酶在二氧化鈦納米管陣列(TNAs)的內(nèi)壁構(gòu)建一個(gè)納米管陣列酶的反應(yīng)器(CYP2C9/Au/TNA),TNAs的導(dǎo)電性可以在TNAs的內(nèi)壁通過(guò)電解沉積金納米顆粒來(lái)提高;CYP2C9酶被作為一個(gè)模型限定在二氧化鈦納米管陣列內(nèi)部,可以通過(guò)改變TNAs的長(zhǎng)度和納米管直徑來(lái)提高CYP的酶活性,表現(xiàn)出極好的酶活性、高親合性和對(duì)底物較高的代謝催化效率.
藥物經(jīng)代謝修飾后能夠產(chǎn)生有效或有毒分子,基于CYP體內(nèi)藥物代謝及其產(chǎn)物的藥理學(xué)貢獻(xiàn)或毒理學(xué)意義,上述的體外藥物代謝酶體系需要聯(lián)合體內(nèi)生理反應(yīng)因子,建立基于培養(yǎng)的細(xì)胞體系高通量藥物代謝與毒性篩選模型才能進(jìn)行全面評(píng)價(jià)藥物代謝及其潛在的毒性行為[12].
LEE等采用酶溶膠固定化微陣列技術(shù),將CYPs催化代謝物合成與原位細(xì)胞毒性篩選模塊相結(jié)合研制出了一種稱作MetaChip的代謝酶毒理分析芯片(圖3)[83]. 該藥物代謝毒理學(xué)微量檢測(cè)平臺(tái)的工作原理是將CYPs(體積30 nL)固定在溶膠-凝膠基質(zhì)上,待測(cè)化合物溶液點(diǎn)樣于該生物催化微陣列上,代謝產(chǎn)物的毒性通過(guò)將含有藥物的MetaChip與人細(xì)胞單層(如MCF7 乳腺癌細(xì)胞)偶聯(lián)接觸,然后定量每個(gè)點(diǎn)樣斑上的細(xì)胞死亡數(shù)來(lái)進(jìn)行評(píng)估的(圖3a). MetaChip在不破壞細(xì)胞整體結(jié)構(gòu)的條件下,對(duì)藥物代謝活化、代謝物生成、細(xì)胞毒性特征進(jìn)行多指標(biāo)在線分析,因而可以在藥物研發(fā)早期對(duì)化合物代謝產(chǎn)物的潛在毒性進(jìn)行快速經(jīng)濟(jì)的預(yù)測(cè)與評(píng)價(jià). 在此基礎(chǔ)上,LEE等進(jìn)一步研制了微型化三維細(xì)胞培養(yǎng)陣列—DataChip[84],其可在單一實(shí)驗(yàn)中獲取包括藥物代謝途徑、細(xì)胞形態(tài)、生長(zhǎng)、凋亡等多個(gè)環(huán)節(jié)的相關(guān)綜合信息(圖3b),高通量檢測(cè)化合物的生物活性和潛在毒性,并獲得候選化合物經(jīng)代謝激活對(duì)細(xì)胞產(chǎn)生的多維立體和實(shí)時(shí)快速的生物效應(yīng)信息[85-86].
圖3 藥代毒性分析芯片MetaChip (a)多維化合物毒性篩選芯片DataChip(b)Fig.3 Drug toxicity analysis chip MetaChip (a) and multidimensional compounds toxicity screening chip DataChip (b)
4結(jié)語(yǔ)
細(xì)胞色素P450介導(dǎo)的藥物代謝是藥物體內(nèi)代謝過(guò)程的關(guān)鍵環(huán)節(jié),是機(jī)體藥物暴露、潛在毒性以及發(fā)揮療效的重要決定因素. 加強(qiáng)CYP藥物代謝催化活性分析研究,對(duì)于揭示藥物的生物氧化機(jī)理、代謝調(diào)控機(jī)制以及新藥篩選評(píng)價(jià)的新方法和新技術(shù)的發(fā)展具有十分重要的理論和現(xiàn)實(shí)意義. 隨著CYP結(jié)構(gòu)與功能研究的深入,相關(guān)交叉學(xué)科和新技術(shù)的引入與融合,促進(jìn)了藥物代謝細(xì)胞色素酶催化活性檢測(cè)技術(shù)研究的快速發(fā)展. 涌現(xiàn)出了一系列新型體外藥物代謝模擬體系,如CYP多酶組裝體、固定雜化CYP、復(fù)合CYP/納米催化劑等酶源材料,可充分利用電化學(xué)驅(qū)動(dòng)、光誘導(dǎo)等高效電子轉(zhuǎn)移手段,并結(jié)合電化學(xué)、化學(xué)發(fā)光、液-質(zhì)聯(lián)用等快速檢測(cè)技術(shù),實(shí)現(xiàn)藥物氧化代謝及其誘導(dǎo)相關(guān)毒性的高通量篩選.
參考文獻(xiàn):
[1] STEPHEN G S. Glimpsing the critical intermediate in cytochrome P450 oxidations [J]. Science, 2010, 330(6006): 924-925.
[2] DENISOV I G, MAKRIS T M, SLIGAR S G, et al. Structure and chemistry of cytochrome P450 [J]. Chem Rev, 2005, 105(6): 2253-2278.
[3] GUENGERICH F P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity [J]. Chem Res Toxicol, 2001, 14(6): 611-650.
[4] ZANGAR R C, DAVYDOV D R, VERMA S. Mechanisms that regulate production of reactive oxygen species by cytochrome P450 [J]. Toxicol Appl Pharm, 2004, 199(3): 316-331.
[5] RENDIC S, GUENGERICH F P. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals [J]. Chem Res Tox, 2014, 28(1): 38-42.
[6] LIEBLER D C, GUENGERICH F P. Elucidating mechanisms of drug-induced toxicity [J]. Nat Rev Drug Discov, 2005, 4(5): 410-420.
[7] PARK B K, BOOBIS A, CLARKE S, et al. Managing the challenge of chemically reactive metabolites in drug development [J]. Nat Rev Drug Discov, 2011, 10(4): 292-306.
[8] HODGSON J. ADMET-turning chemicals into drugs [J]. Nature Bio, 2001, 19(8): 722-726.
[9] WIENKERS L C, HEATH T G. Predicting in vivo drug interactions from in vitro drug discovery data [J]. Nat Rev Drug Discov, 2005, 4(10): 825-833.
[10] HOP C E, COLE M J, DAVIDSON R E, et al. High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models [J]. Curr Drug Metab, 2008, 9(9): 847-853.
[11] 王青秀, 吳純啟, 廖明陽(yáng). 細(xì)胞色素 P450 酶誘導(dǎo)和抑制效應(yīng)高通量篩選系統(tǒng)研究進(jìn)展 [J]. 中國(guó)新藥雜志, 2007, 16(3): 204-208.
[12] 何小愛(ài), 劉智, 程澤能. 高通量藥物代謝與毒性篩選平臺(tái)研究進(jìn)展 [J]. 中南藥學(xué), 2008, 6(5): 596-599.
[13] ANSEDE J H, THAKKER D R. High-throughput screening for stability and inhibitory activity of compounds toward cytochrome P450-mediated metabolism [J]. J Pharm Sci, 2004, 93(2): 239-255.
[14] CALI J J, MA D, WOOD M G, et al. Bioluminescent assays for ADME evaluation: dialing in CYP selectivity with luminogenic substrates [J]. Expert Opin Drug Met, 2012, 8(9): 1115-1130.
[15] DUNN A R, HAYS A M A, GOODIN D B, et al. Fluorescent probes for cytochrome P450 structural characterization and inhibitor screening [J]. J Am Chem Soc, 2002, 124(35): 10254-10255.
[16] RUFF A J L, DENNIG A, WIRTZ G, et al. Flow cytometer-based high-throughput screening system for accelerated directed evolution of P450 monooxygenases [J]. ACS Catal, 2012, 2(12): 2724-2728.
[17] UNGER M, FRANK A. Simultaneous determination of the inhibitory potency of herbal extracts on the activity of six major cytochrome P450 enzymes using liquid chromatography/mass spectrometry and automated online extraction [J]. Rapid Commun Mass Spectrom, 2004, 18(19): 2273-2281.
[18] HARSKAMP J, BRITZ-MCKIBBIN P, WILSON J Y. Functional screening of cytochrome P450 activity and uncoupling by capillary electrophoresis [J]. Anal Chem, 2011, 84(2): 862-866.
[19] BEHERA D, PATTEM R, KUMAR M, et al. Utility of a column-switching LC/MS/MS method in cytochrome P450 inhibition assays using human liver microsomes [J]. Drug Metab Dispos, 2013, 28(3): 177-185.
[20] QIN C Z, REN X, TAN Z R, et al. A high-throughput inhibition screening of major human cytochrome P450 enzymes using an in vitro cocktail and liquid chromatography-tandem mass spectrometry [J]. Biomed Chromatogr, 2014, 28(2): 197-203.
[21] N OTTEN J, P HINGORANI G, P HARTLEY D, et al. An in vitro, high throughput, seven CYP cocktail inhibition assay for the evaluation of new chemical entities using LC-MS/MS [J]. Drug Metab Lett, 2011, 5(1): 17-24.
[22] LIU L Y, HAN Y L, ZHU J H, et al. A sensitive and high-throughput LC-MS/MS method for inhibition assay of seven major cytochrome P450s in human liver microsomes using an in vitro cocktail of probe substrates [J]. Biomed Chromatogr, 2015, 29(3): 437-444.
[23] DASGUPTA M, TANG W, CALDWELL G W, et al. Use of stable isotope labeled probes to facilitate liquid chromatography/mass spectrometry based high-throughput screening of time-dependent CYP inhibitors [J]. Rapid Commun Mass Spectrom, 2010, 24(15): 2177-2185.
[24] 郭賓, 段俊敏, 王美玲, 等. 流動(dòng)注射-串聯(lián)質(zhì)譜法快速篩選植物提取物對(duì)藥物代謝酶的抑制潛性 [J]. 分析化學(xué), 2010, 38(12): 1692-1697.
[25] WU J, HUGHES C S, PICARD P, et al. High-throughput cytochrome P450 inhibition assays using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry [J]. Anal Chem, 2007, 79(12): 4657-4665.
[26] BEATTIE I, SMITH A, WESTON D J, et al. Evaluation of laser diode thermal desorption (LDTD) coupled with tandem mass spectrometry (MS/MS) for support of in vitro drug discovery assays: increasing scope, robustness and throughput of the LDTD technique for use with chemically diverse compound libraries [J]. J Pharm Biomed Anal, 2012, 59: 18-28.
[27] OBACH R S, REED-HAGEN A E. Measurement of Michaelis constants for cytochrome P450-mediated biotransformation reactions using a substrate depletion approach [J]. Drug Metabo Dispos, 2002, 30(7): 831-837.
[28] KOMURA H, IWAKI M. Nonlinear pharmacokinetics of propafenone in rats and humans: application of a substrate depletion assay using hepatocytes for assessment of nonlinearity [J]. Drug Metab Dispos, 2005, 33(6): 726-732.
[29] NATH A, ATKINS W M. A theoretical validation of the substrate depletion approach to determining kinetic parameters [J]. Drug Metab Dispos, 2006, 34(9): 1433-1435.
[30] SJ GREN E, LENNERN S H, ANDERSSON T B, et al. The multiple depletion curves method provides accurate estimates of intrinsic clearance (CLint), maximum velocity of the metabolic reaction (Vmax), and Michaelis constant (Km): accuracy and robustness evaluated through experimental data and Monte Carlo simulations [J]. Drug Metab Dispos, 2009, 37(1): 47-58.
[31] YOUDIM K, DODIA R. Comparison between recombinant P450s and human liver microsomes in the determination of cytochrome P450 Michaelis-Menten constants [J]. Xenobiotica, 2010, 40(4): 235-244.
[32] OBACH R S, BAXTER J G, LISTON T E, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data [J]. J Pharmacol Exper Ther, 1997, 283(1): 46-58.
[33] 洪英, 郭賓, 段俊敏. 基于多衰減曲線計(jì)算藥物代謝酶動(dòng)力學(xué)參數(shù)的新方法 [J]. 湖南工業(yè)大學(xué)學(xué)報(bào), 2011, 25(1): 34-39.
[34] 段俊敏, 王曉瑩, 郭賓, 等. 底物消除法測(cè)定微粒體酶動(dòng)力學(xué)參數(shù)的實(shí)用性分析 [J]. 中國(guó)衛(wèi)生檢驗(yàn)雜志, 2011, 21(7): 1691-1694.
[35] DE WAAL F B. Cultural primatology comes of age [J]. Nature, 1999, 399(6737): 635-636.
[36] CHANG G, MORIGAKI K, TATSU Y, et al. Vertically integrated human P450 and oxygen sensing film for the assays of P450 metabolic activities [J]. Anal Chem, 2011, 83(8): 2956-2963.
[37] CHANG G, MORI Y, MORI S, et al. Microarray of human P450 with an integrated oxygen sensing film for high-throughput detection of metabolic activities [J]. Anal Chem, 2012, 84(12): 5292-5297.
[38] KANEMURA E, GOTO T, TATSU Y, et al. Parallel assay of inkjet-printed cytochrome P450 [J]. Anal Methods, 2014, 6(7): 2117-2124.
[39] TRAYLOR M J, RYAN J D, ARNON E S, et al. Rapid and quantitative measurement of metabolic stability without chromatography or mass spectrometry [J]. J Am Chem Soc, 2011, 133(37): 14476-14479.
[40] YOSHIOKA K, KATO D, KAMATA T, et al. Cytochrome P450 modified polycrystalline indium tin oxide film as a drug metabolizing electrochemical biosensor with a simple configuration [J]. Anal Chem, 2013, 85(21): 9996-9999.
[41] FANTUZZI A, FAIRHEAD M, GILARDI G. Direct electrochemistry of immobilized human cytochrome P450 2E1 [J]. J Am Chem Soc, 2004, 126(16): 5040-5041.
[42] MIE Y, SUZUKI M, KOMATSU Y. Electrochemically driven drug metabolism by membranes containing human cytochrome P450 [J]. J Am Chem Soc, 2009, 131(19): 6646-6647.
[43] REN B Z, FRAPART Y, ROCKENBAUER A, et al. Metabolic stability of superoxide and hydroxyl radical adducts of a cyclic nitrone toward rat liver microsomes and cytosol: A stopped-flow ESR spectroscopy study [J]. Free Radical Bio Med, 2010, 49(3): 437-446.
[44] MA S, SUBRAMANIAN R. Detecting and characterizing reactive metabolites by liquid chromatography/tandem mass spectrometry [J]. J Mass Spectrom, 2006, 41(9): 1121-1139.
[45] ZHU W, YUAN Y, ZHOU P, et al. The expanding role of electrospray ionization mass spectrometry for probing reactive intermediates in solution [J]. Molecules, 2012, 17(10): 11507-11537.
[46] HVASTKOVS E G, SCHENKMAN J B, RUSLING J F. Metabolic toxicity screening using electrochemiluminescence arrays coupled with enzyme-DNA biocolloid reactors and liquid chromatography-mass spectrometry [J]. Annu Rev Anal Chem (Palo Alto Calif), 2012, 5(1): 79-80.
[47] ZHOU L, YANG J, ESTAVILLO C, et al. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films [J]. J Am Chem Soc, 2003, 125(5): 1431-1436.
[48] HULL D O, BAJRAMI B, JANSSON I, et al. Characterizing metabolic inhibition using electrochemical enzyme/DNA biosensors [J]. Anal Chem, 2009, 81(2): 716-724.
[49] SULTANA N, SCHENKMAN J B, RUSLING J F. Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases [J]. J Am Chem Soc, 2005, 127(39): 13460-13461.
[50] KRISHNAN S, HVASTKOVS E G, BAJRAMI B, et al. Synergistic metabolic toxicity screening using microsome/DNA electrochemiluminescent arrays and nanoreactors [J]. Anal Chem, 2008, 80(14): 5279-5285.
[51] HVASTKOVS E G, SO M, KRISHNAN S, et al. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo [a] pyrene metabolites [J]. Anal Chem, 2007, 79(5): 1897-1906.
[52] GUIJARRO D, PABLO, YUS M. Ruthenium-catalysed asymmetric transfer hydrogenation of N-(tert-butanesulfinyl) imines [J]. Tetrahedron Lett, 2009, 50(38): 5386-5388.
[53] KRISHNAN S, WASALATHANTHRI D, ZHAO L, et al. Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s [J]. J Am Chem Soc, 2011, 133(5): 1459-1465.
[54] FANTUZZI A, CAPRIA E, MAK L H, et al. An electrochemical microfluidic platform for human P450 drug metabolism profiling [J]. Anal Chem, 2010, 82(24): 10222-10227.
[55] WASALATHANTHRI D P, MANI V, TANG C K, et al. Microfluidic electrochemical array for detection of reactive metabolites formed by cytochrome P450 enzymes [J]. Anal Chem, 2011, 83(24): 9499-9506.
[56] WASALATHANTHRI D P, MALLA S, BIST I, et al. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence [J]. Lab on a Chip, 2013, 13(23): 4554-4562.
[57] BAJRAMI B, HVASTKOVS E G, JENSEN G C, et al. Enzyme-DNA biocolloids for DNA adduct and reactive metabolite detection by chromatography-mass spectrometry [J]. Anal Chem, 2008, 80(4): 922-932.
[58] BAJRAMI B, KRISHNAN S, RUSLING J F. Microsome biocolloids for rapid drug metabolism and inhibition assessment by LC-MS [J]. Drug Metab Lett, 2008, 2(3): 158.
[59] WASALATHANTHRI D P, LI D, SONG D, et al. Elucidating organ-specific metabolic toxicity chemistry from electrochemiluminescent enzyme/DNA arrays and bioreactor bead-LC-MS/MS [J]. Chem Sci, 2015, 6(4): 2457-2468.
[60] BAJRAMI B, ZHAO L, SCHENKMAN J B, et al. Rapid LC-MS drug metabolite profiling using microsomal enzyme bioreactors in a parallel processing format [J]. Anal Chem, 2009, 81(24): 9921-9929.
[61] ZHAO L, SCHENKMAN J B, RUSLING J F. High-throughput metabolic toxicity screening using magnetic biocolloid reactors and LC-MS/MS [J]. Anal Chem, 2010, 82(24): 10172-10178.
[62] LI D, FU Y J, RUSLING J F. Characterizing protein modifications by reactive metabolites using magnetic bead bioreactors and LC-MS/MS [J]. Chem Commun, 2015, 51(22): 4701-4703.
[63] GANNETT P M, KABULSKI J, PEREZ F A, et al. Preparation, characterization, and substrate metabolism of gold-immobilized cytochrome P450 2C9 [J]. J Am Chem Soc, 2006, 128(26): 8374-8375.
[64] LEE J H, NAM D H, LEE S H, et al. New Platform for cytochrome P450 reaction combining in situ immobilization on biopolymer [J]. Bioconjug Chem, 2014, 25(12): 2101-2104.
[65] SAKAI-KATO K, KATO M, HOMMA H, et al. Creation of a P450 array toward high-throughput analysis [J]. Anal Chem, 2005, 77(21): 7080-7083.
[66] LOHMANN W, KARST U. Biomimetic modeling of oxidative drug metabolism [J]. Analand Bioanal Chem, 2008, 391(1): 79-96.
[67] BUSSY U, BOUJTITA M. Advances in the electrochemical simulation of oxidation reactions mediated by cytochrome P450 [J]. Chem Res Toxicol, 2014, 27(10): 1652-1668.
[68] ZHANG W, LIU Y, YAN J, et al. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners [J]. J Am Chem Soc, 2014, 136(9): 3640-3646.
[69] XU X, WEI W, HUANG M, et al. Electrochemically driven drug metabolism via cytochrome P450 2C9 isozyme microsomes with cytochrome P450 reductase and indium tin oxide nanoparticle composites [J]. Chem Commun, 2012, 48(63): 7802-7804.
[70] DODHIA V R, SASSONE C, FANTUZZI A, et al. Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering [J]. Electrochem Commun, 2008, 10(11): 1744-1747.
[71] FANTUZZI A, MAK L H, CAPRIA E, et al. A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450 [J]. Anal Chem, 2011, 83(10): 3831-3839.
[72] BAJRAMI B, HVASTKOVS E G, JENSEN G C, et al. Enzyme-DNA biocolloids for DNA adduct and reactive metabolite detection by chromatography-mass spectrometry [J]. Anal Chem, 2008, 80(4): 922-932.
[73] LAMB J G, HATHAWAY L B, MUNGER M A, et al. Nanosilver particle effects on drug metabolism in vitro [J]. Drug Metab Dispos, 2010, 38(12): 2246-2251.
[74] YE M, TANG L, LUO M, et al. Size- and time-dependent alteration in metabolic activities of human hepatic cytochrome P450 isozymes by gold nanoparticles via microsomal coincubations [J]. Nanoscale Res Lett, 2014, 9(1): 1-16.
[75] IPE B I, NIEMEYER C M. Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts [J]. Angew Chem Int Ed, 2006, 45(3): 504-507.
[76] GANDUBERT V J, TORRES E, NIEMEYER C M. Investigation of cytochrome P450-modified cadmium sulfide quantum dots as photocatalysts [J]. J Mater Chem, 2008, 18(32): 3824-3830.
[77] XU X, QIAN J, YU J, et al. Cytochrome P450 enzyme functionalized-quantum dots as photocatalysts for drug metabolism [J]. Chem Commun, 2014, 50(57): 7607-7610.
[78] PARK J H, LEE S H, CHA G S, et al. Cofactor-free light-driven whole-cell cytochrome P450 catalysis [J]. Angew Chem, 2015, 127(3): 983-987.
[79] HUANG M, XU X, YANG H, et al. Electrochemically-driven and dynamic enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites [J]. RSC Adv, 2012, 2(33): 12844-12850.
[80] CUI D, MI L, XU X, et al. Nanocomposites of graphene and cytochrome P450 2D6 isozyme for electrochemical-driven tramadol metabolism [J]. Langmuir, 2014, 30(39): 11833-11840.
[81] WANG N, GAO C, XUE F, et al. Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450 [J]. ACS Nano, 2015, 9(3): 3159-3168.
[82] LU J, LI H, CUI D, et al. Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO2nanotube arrays [J]. Anal Chem, 2014, 86(15): 8003-8009.
[83] LEE M Y, PARK C B, DORDICK J S, et al. Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses [J]. PNAS, 2005, 102(4): 983-987.
[84] LEE M Y, KUMAR R A, SUKUMARAN S M, et al. Three-dimensional cellular microarray for high-throughput toxicology assays [J]. PNAS, 2008, 105(1): 59-63.
[85] FERNANDES T G, DIOGO M M, CLARK D S, et al. High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research [J]. Trends Biotechnol, 2009, 27(6): 342-349.
[86] MERCEY E, OBE D P, GLAISE D, et al. The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays [J]. Biomaterials, 2010, 31(12): 3156-3165.
[責(zé)任編輯:任鐵鋼]
Methdological innovations in enzyme activity measurement of
xenobiotic-metabolizing cytochrome P450
LIU Yanyan, CHENG Yuqing, TAN Zhen, GUO Bin*
(KeyLaboratoryofChemicalBiologyandTraditionalChineseMedicineResearch,Collegeof
ChemistryandChemicalEngineering,HunanNormalUniversity,Changsha410081,Hunan,China)
Abstract:Cytochrome P450 monooxygenase (CYP) can efficiently catalyze oxidation reaction of a wide variety of organic compounds with different structures, and it is known as the universal catalyst of nature and the most important drug detoxification enzyme of the body. In this article we briefly review the new progresses of traditional methods and a number of new analytical techniques of cross-disciplinary emerging in recent years for measuring CYP activity, including monitoring changes of oxygen, cofactor or reactive metabolites during the metabolic process, electrochemically driven electron transfer, alternative CYP nanohybrid materials, which provide new ideas for developing new type of analytical technologies and deepening the understanding of the catalytic mechanism of CYP-mediated metabolic reactions.
Keywords:cytochrome P450;drug metabolism;enzyme activity assay;technology progress
作者簡(jiǎn)介:劉妍妍 (1991-), 女, 碩士生, 研究方向?yàn)榉治龌瘜W(xué).*通訊聯(lián)系人, E-mail:binguo@hunnu.edu.cn.
基金項(xiàng)目:國(guó)家自然科學(xué) (21005027, 81274178).
收稿日期:2015-09-01.
文章編號(hào):1008-1011(2015)06-0551-10
中圖分類號(hào):O652
文獻(xiàn)標(biāo)志碼:A