徐明亮,龍志敏,廖娥,鐘國超,杜燁鴻,駱世芳,賀桂瓊
卵巢切除對APP/PS1雙轉(zhuǎn)基因小鼠腦內(nèi)老年斑及自噬的影響
徐明亮,龍志敏,廖娥,鐘國超,杜燁鴻,駱世芳,賀桂瓊
目的研究雌激素對APP/PS1雙轉(zhuǎn)基因小鼠腦內(nèi)老年斑及自噬的影響,探討雌激素缺乏導致阿爾茨海默病(AD)的病理機制。方法將3月齡雌性APP/PS1雙轉(zhuǎn)基因AD模型小鼠分為卵巢切除組與假手術組,術后2個月采用免疫組化染色及透射電鏡觀察兩組小鼠腦內(nèi)老年斑及自噬功能的變化,同時檢測自噬相關蛋白LC3、Beclin-1的表達情況。結果免疫組化結果顯示,與假手術組相比,卵巢切除組小鼠腦內(nèi)老年斑顯著增加,分布更廣,自噬相關蛋白LC3、Beclin-1陽性神經(jīng)元數(shù)量均顯著下降。電鏡觀察可見,與假手術組相比,卵巢切除組小鼠海馬神經(jīng)元及突起腫脹明顯,暗神經(jīng)元增加,神經(jīng)元突起周圍自噬小泡顯著增多。結論雌激素缺乏可導致自噬泡成熟受阻、活性降低、自噬功能減弱,從而導致AD病理改變加重。
卵巢切除術;阿爾茨海默??;老年斑;自噬;小鼠,轉(zhuǎn)基因
阿爾茨海默病(Alzheimer disease,AD)是一種發(fā)病機制未明的慢性進行性神經(jīng)系統(tǒng)變性疾病[1],是臨床上最為常見的癡呆類型。神經(jīng)細胞外淀粉樣β蛋白(amyloid β peptide,Aβ)沉積形成的老年斑是AD的典型病理特征之一[2]。研究顯示,女性絕經(jīng)后罹患AD的風險較同齡男性更高,這與絕經(jīng)后女性腦內(nèi)雌激素水平驟降及隨后持續(xù)處于低水平有關[3-4],但雌激素缺乏導致AD的分子機制尚不明確。研究表明,細胞自噬異常在AD發(fā)病中起重要作用,自噬泡被認為是Aβ產(chǎn)生的源頭[5]。那么,雌激素缺乏是否影響自噬泡的數(shù)量或活性,進而影響體內(nèi)Aβ的水平及老年斑的形成?關于這一問題尚無文獻報道。本課題擬以卵巢切除AD模型小鼠為研究對象,應用形態(tài)學檢測手段,觀察雌激素缺乏對癡呆小鼠腦內(nèi)老年斑形成及自噬功能的影響,以探討AD發(fā)生發(fā)展的病理機制。
1.1 動物及試劑 APP/PS1雙轉(zhuǎn)基因癡呆模型小鼠購于中國醫(yī)學科學院醫(yī)學實驗動物研究所,體重25~35g,進行基因鑒定后喂養(yǎng)于重慶醫(yī)科大學動物中心SPF級動物房。實驗遵循實驗動物使用倫理相關要求。鼠抗4G8單克隆抗體購自Convance公司,兔抗LC3多克隆抗體購自Sigma公司,兔抗Beclin-1多克隆抗體購自Abcam公司,小鼠二步法免疫組化試劑盒、兔二步法免疫組化試劑盒、DAB試劑盒均購自北京中杉金橋生物技術有限公司,其他試劑均為國產(chǎn)分析純。
1.2 實驗方法
1.2.1 動物模型建立 3月齡APP/PS1雙轉(zhuǎn)基因雌性小鼠共16只,隨機分為假手術組與卵巢切除組(n=8)。經(jīng)3.5%水合氯醛麻醉后暴露腹腔,切除雙側卵巢,制成雌激素缺乏模型。假手術組麻醉后暴露腹腔,不做其他處理,逐層縫合后2組小鼠均于SPF級條件中持續(xù)喂養(yǎng)2個月。
1.2.2 標本制備 小鼠麻醉后,開胸暴露心臟。經(jīng)左心室插管至升主動脈,剪開右心耳,灌注生理鹽水,冰上斷頭取腦。將腦組織置于4%多聚甲醛溶液中固定,常規(guī)石蠟包埋,冠狀切片,厚度4μm。
1.2.3 形態(tài)學觀察 免疫組化染色:石蠟切片經(jīng)二甲苯脫蠟,梯度乙醇水化,PBS清洗5min×3次,枸櫞酸鈉微波抗原修復,室溫自然冷卻,PBS清洗5min×3次,3%H2O210min消除內(nèi)源性過氧化物酶,PBS沖洗5min×3次,加入一抗(抗體稀釋比例4G8為1:500,LC3為1:400,Beclin-1為1:400),4℃冰箱過夜。次日用PBS清洗5min×3次,加入相應二抗,室溫孵育60min,PBS清洗5min×3次。加入DAB顯色,顯微鏡下觀察并適時終止顯色,梯度乙醇和二甲苯1、二甲苯2脫水透明后用中性樹膠封固,光鏡下觀察并采集圖像。計數(shù)4G8陽性斑塊數(shù)量并計算其面積,計數(shù)Beclin-1、LC3陽性神經(jīng)元數(shù)量。透射電鏡觀察:小鼠用4%多聚甲醛、2.5%戊二醛灌注固定后,在解剖鏡下取小鼠海馬CA1區(qū)1mm3組織塊,2.5%戊二醛中固定2h,1%四氧化鋨固定,乙醇丙酮梯度脫水,環(huán)氧樹脂包埋聚合,半薄切片定位,超薄切片,鉛鈾染色,透射電鏡(Hitachi-7500)下觀察腦組織超微結構。
1.3 統(tǒng)計學處理 采用SPSS 17.0軟件進行數(shù)據(jù)處理。計量資料以表示,組間比較采用兩樣本均數(shù)的t檢驗。P<0.05為差異有統(tǒng)計學意義。
2.1 卵巢切除后小鼠腦皮質(zhì)及海馬Aβ沉積的變化
免疫組化染色顯示,兩組AD小鼠腦內(nèi)均出現(xiàn)了4G8陽性斑塊,說明兩組小鼠腦組織神經(jīng)元外均有Aβ的沉積。但假手術組小鼠腦內(nèi)的散在陽性斑塊主要分布在大腦皮質(zhì),海馬內(nèi)偶見。卵巢切除小鼠大腦皮質(zhì)和海馬內(nèi)4G8陽性斑塊數(shù)量明顯增多(P=0.001)、斑塊面積增加(P=0.011,圖1)。透射電鏡觀察顯示:兩組小鼠海馬內(nèi)均出現(xiàn)神經(jīng)元突起腫脹。與假手術組相比,卵巢切除組小鼠海馬內(nèi)暗神經(jīng)元增多,且神經(jīng)元突起周圍出現(xiàn)數(shù)量較多的自噬小泡(圖2)。
圖1 兩組小鼠腦內(nèi)老年斑情況比較(免疫組化染色×400)Fig.1 Senile plaques (SP) in the brain of two groups of shamoperated AD (Sham-AD) and ovariectomy AD (OVX-AD) mice (Immunohistochemistry staining ×400)
2.2 卵巢切除后小鼠腦內(nèi)自噬相關蛋白表達的變化 免疫組化染色顯示,兩組小鼠腦內(nèi)均出現(xiàn)較多的自噬相關蛋白Beclin-1陽性神經(jīng)元,假手術組小鼠腦內(nèi)Beclin-1陽性神經(jīng)元數(shù)量較多(88.50±12.45個),但免疫陽性物主要分布于近胞膜胞質(zhì)處,卵巢切除組小鼠腦內(nèi)的Beclin-1陽性神經(jīng)元數(shù)目明顯減少(44.00±3.74,P<0.001)且免疫陽性物均勻分布于整個胞質(zhì)。另一自噬相關蛋白LC3免疫陽性細胞也廣泛分布于兩組小鼠腦內(nèi),假手術組小鼠腦內(nèi)LC3陽性神經(jīng)元數(shù)量較多(88.50±12.45個),胞體和突起濃染,且突起較長,而卵巢切除組小鼠腦內(nèi)LC3陽性神經(jīng)元數(shù)量明顯減少(62.00±11.92個,P=0.006),雖然胞體和突起均濃染,但突起較短,提示突起可能有變性、斷裂(圖3)。
圖2 兩組小鼠腦組織超微結構的電鏡觀察(×4000)Fig.2 Ultrastructures of neurons under transmission electron microscopy (TEM) in the 2 groups (×4000)
圖3 兩組小鼠大腦皮質(zhì)Beclin-1與LC3表達情況(免疫組化 ×400)Fig.3 Expression of Beclin-1 and LC3 in the brain of two groups of sham-operated AD and ovariectomy AD (OVX-AD) mice (Immunohistochemistry staining ×400)
老年斑(senile plaque,SP)是AD腦部典型的病理特征之一[6],主要由Aβ聚集和沉積而成,Aβ被認為是AD發(fā)病的始動因素[7-9]。Aβ由淀粉蛋白前體蛋白(amyloid precursor protein,APP)經(jīng)β-分泌酶和早老素1(presenilin 1,PS1)/γ-分泌酶相繼切割產(chǎn)生[10]。研究已證實APP與PS的基因突變是引起家族性AD的主要原因[11-12]。本實驗所用小鼠同時攜帶“瑞典家族”突變的APP(APPswe)與PS1(PS△E9)基因:APPswe基因中,突變發(fā)生在APP編碼序列末端的670(Lvs/Asn)、671(Met/Leu)位點,PS△E9則是在家族性AD中發(fā)現(xiàn)的第9個外顯子缺失突變。此類小鼠隨月齡增加出現(xiàn)認知功能的進行性損害,腦組織出現(xiàn)SP沉積及神經(jīng)元丟失,類似AD患者的病理特征。因此,APP/PS1雙轉(zhuǎn)基因小鼠被認為是研究AD病理機制及藥物篩選的理想動物模型[13]。
本研究對3月齡APP/PS1小鼠行雙側卵巢切除,術后2個月觀察到小鼠腦內(nèi)SP數(shù)量增加,體積增大,且有大量小體積的新生SP產(chǎn)生,同時SP的分布范圍更廣,可見于大腦皮質(zhì)和海馬等腦區(qū)。電鏡觀察還發(fā)現(xiàn)卵巢切除小鼠腦內(nèi)神經(jīng)元突起腫脹明顯,暗神經(jīng)元數(shù)量增多,此外,Aβ沉積及神經(jīng)元變性等病理特征有加重趨勢,提示雌激素缺乏可加速AD的病程。本研究結果與AD流行病學調(diào)查相吻合。流行病學調(diào)查顯示,絕經(jīng)后婦女AD的發(fā)病率比同年齡男性高1.5~3倍,女性AD患者腦內(nèi)的病理改變及認知功能障礙較男性患者嚴重,這可能與絕經(jīng)后雌激素水平下降有關[3]。因此,本研究采用的雙側卵巢切除術AD模型小鼠可模擬臨床絕經(jīng)期女性AD患者,是探尋雌激素缺乏導致AD發(fā)生發(fā)展病理機制的一種可靠動物模型[14]。
本研究觀察到,卵巢切除AD模型小鼠腦內(nèi)自噬小泡顯著增多,且主要圍繞在軸突周圍,提示雌激素缺乏可誘導自噬泡增加。自噬是細胞利用溶酶體降解自身受損的細胞器和錯誤折疊的蛋白質(zhì)等有害大分子物質(zhì)的重要途徑[15],是真核細胞特有的生命現(xiàn)象[16]。細胞接受自噬誘導信號后,首先形成雙層扁平狀膜結構的吞噬泡,并逐漸擴展包裹待降解物質(zhì),兩端融合形成密閉球狀的自噬體。自噬體沿微管運行,與多泡體或內(nèi)涵體融合并成熟。成熟的自噬體與溶酶體融合形成單層膜的自噬溶酶體,進而酸化,激活酸性蛋白水解酶執(zhí)行降解功能[17]。自噬途徑異常表現(xiàn)為早期自噬體在數(shù)量和體積上的增加。細胞自噬異常在AD發(fā)病中發(fā)揮重要作用[5,18-19],研究發(fā)現(xiàn)自噬泡(包括自噬體和自噬溶酶體)中富含APP、Aβ及γ-分泌酶,誘導自噬可引起Aβ增多,因此,自噬泡被認為是Aβ產(chǎn)生的場所[5,20]。AD患者及模型鼠腦中各種不成熟自噬泡的異常增多是自噬被激活的有力證據(jù)[21]。本實驗觀察到卵巢切除小鼠腦內(nèi)Aβ沉積加重,可能系雌激素缺乏導致自噬小泡增多所致。
有研究表明,自噬具有神經(jīng)保護作用,中樞神經(jīng)系統(tǒng)基礎水平的自噬受抑制可導致泛素化蛋白的累積和神經(jīng)退行性疾病,誘導自噬可加速有毒物質(zhì)的清除[22-23]。本研究觀察到卵巢切除后自噬泡顯著增加,但增加的自噬泡不僅未能清除具有神經(jīng)毒性的Aβ,反而導致Aβ沉積增加,所以我們推測雌激素缺乏可能導致了自噬成熟受阻、自噬活性降低。為驗證此假設,本研究觀察了反映自噬活性的分子標志物Beclin-1,發(fā)現(xiàn)卵巢切除小鼠腦內(nèi)Beclin-1表達顯著低于對照組小鼠,且另一自噬相關蛋白LC3的表達改變與其一致。上述結果表明雌激素缺乏可影響自噬溶酶體的成熟,從而導致自噬活性降低、自噬功能減弱,相應地,不成熟自噬泡聚集增加,Aβ降解受阻,從而導致Aβ的沉積增多。但雌激素缺乏導致自噬異常的機制尚有待深入研究。
[1] Carrillo MC, Dean RA, Nicolas F,et al. Revisiting the framework of the National Institute on Aging-Alzheimer's Association diagnostic criteria[J]. Alzheimers Dement, 2013, 9(5): 594-601.
[2] Kobayashi K, Nakano H, Hayashi M,et al. Association of phosphorylation site of tau protein with neuronal apoptosis in Alzheimer's disease[J]. J Neurol Sci, 2003, 208(1/2): 17-24.
[3] Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sexspecific medicines[J]. Pharmacol Rev, 2010, 62(2): 155-198.
[4] Cahill L. Why sex matters for neuroscience[J]. Nat Rev Neurosci, 2006, 7(6): 477-484.
[5] Ohta K, Mizuno A, Ueda M,et al. Autophagy impairment stimulates PS1 expression and gamma-secretase activity[J]. Autophagy, 2010, 6(3): 345-352.
[6] Wang YR, Liu YH, Liang CR,et al.Expression profile of p75NTR and its relationship with formation of amyloid plaques in the brain of Alzheimer's disease patients[J]. Med J Chin PLA, 2014, 39(5):379-382. [王葉冉,劉雨輝,梁春榮,等.阿爾茨海默病患者腦內(nèi)p75神經(jīng)營養(yǎng)因子受體(p75NTR)的表達及與老年斑位置關系的研究[J].解放軍醫(yī)學雜志, 2014, 39(5): 379-382.]
[7] Reitz C. Alzheimer's disease and the amyloid cascade hypothesis: a critical review[J]. Int J Alzheimers Dis, 2012, 2012: 369808.
[8] Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis[J]. Science, 1992, 256(5054): 184-185.
[9] Guo XH, Lu H, Niu RN,et al. Detection of serum matrix metalloproteinase 2 and 9 in patients with Alzheimer disease[J]. J Zhengzhou Univ (Med Sci), 2014, 49(1): 137-139. [郭曉紅,盧宏, 牛瑞娜, 等. 阿爾茨海默病患者血清 基質(zhì)金屬蛋白酶2和9水平的測定[J]. 鄭州大學學報(醫(yī)學版), 2014, 49(1): 137-139.]
[10] Duan LJ, Zu HB. The research development of target therapy of Alzheimer disease[J]. Chin J Pract Intern Med, 2014, 34(5): 518-520. [段立潔, 祖衡兵. 阿爾茲海默病藥物治療靶點的研究進展[J]. 中國實用內(nèi)科雜志, 2014, 34(5): 518-520.]
[11] Ikeda T, Yamada M. Risk factors for Alzheimer's disease[J]. Brain Nerve, 2010, 62(7): 679-690.
[12] Michelsen KA, Korr H, Steinbusch HW,et al. Presenilin 1-related alterations in DNA integrity in a transgenic mouse model of Alzheimer's disease[J]. Brain Res, 2010, 1316: 139-144.
[13] Dickey CA, Loring JF, Montgomery J,et al. Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice[J]. J Neurosci, 2003, 23(12): 5219-5226.
[14] Wang JM, Hou X, Adeosun S,et al. A dominant negative ERbeta splice variant determines the effectiveness of early or late estrogen therapy after ovariectomy in rats[J]. PLoS One, 2012, 7(3): e33493.
[15] Yang JH, Gao XG, Fu ZR.Autophagy in liver immune tolerance: mechanisms and progress[J]. Med J Chin PLA, 2014, 39(6): 503-506. [楊璟輝,高曉剛, 傅志仁. 自噬在肝臟免疫耐受中的作用機制研究進展[J]. 解放軍醫(yī)學雜志, 2014, 39(6): 503-506.]
[16] Kragh CL, Ubhi K, Wyss-Coray T,et al. Autophagy in dementias[J]. Brain Pathol, 2012, 22(1): 99-109.
[17] Banerjee R, Beal MF, Thomas B. Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications[J]. Trends Neurosci, 2010, 33(12): 541-549.
[18] Wolfe DM, Lee JH, Kumar A,et al. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification[J]. Eur J Neurosci, 2013, 37(12): 1949-1961.
[19] Salminen A, Kaarniranta K, Kauppinen A,et al. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome[J]. Prog Neurobiol, 2013, (106/107): 33-54.
[20] Yu WH, Cuervo AM, Kumar A,et al. Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease[J]. J Cell Biol, 2005, 171(1): 87-98.
[21] Schaeffer V, Lavenir I, Ozcelik S,et al. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy[J]. Brain, 2012, 135(Pt 7): 2169-2177.
[22] Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the cleaning crew goes on strike[J]. Lancet Neurol, 2007, 6(4): 352-361.
[23] Xue Z, Zhang S, Huang L,et al. Upexpression of Beclin-1-dependent autophagy protects against beta-amyloid-induced cell injury in PC12 cells[J]. J Mol Neurosci, 2013, 51(1): 180-186.
Effects of ovariectomy on autophagy and senile plaques in the brain of adult APP/PS1 double transgenic mice
XU Ming-liang1, LONG Zhi-min1, LIAO E1, ZHONG Guo-chao1, DU Ye-hong1, LUO Shi-fang1,2, HE Gui-qiong1,2*1Institute of Neuroscience,2Department of Human Anatomy, Chongqing Medical University, Chongqing 400016, China
*Corresponding author, E-mail: guiqionghe@hotmail.com
This work was supported by the National Natural Science Foundation of China (81371221), the Program for New Century Excellent Talents in University of the National Department of Education (NCET-11-1084), the Technology Foundation for Selected Overseas Chinese Scholar, Ministry or Personnel of China[(2011)235], and the College Students' Scientific Research and Innovation Experimental Program of Chongqing Medical University (201221)
ObjectiveTo investigate the effect of ovarian estrogen on autophagy and senile plaques (SP) in the brain of adult APP/PS1 double transgenic mice, and inquire into the mechanism of Alzheimer disease (AD) neuropathogenesis due to estrogen deficiency.MethodsAPP/PS1 AD mice (3-month old) were divided into ovariectomy group (OVX-AD) and sham group (sham-AD). Two months after operation, transmission electron microscopy (TEM) was employed to observe the morphological structures of the brains of AD model mice, and immunohistochemical staining was performed to examine the changes in SP and autophagy-related proteins LC3 and Beclin-1 in the brain of AD model mice.ResultsImmunohistochemical staining showed that the number of SP in the brain of OVX-AD mice incrcased significantly compared with that in sham-AD mice, and distribution of SP was observed more extensively, including the cortex and hippocampus. The autophagy related proteins LC3 and Beclin-1 positive neurons were decreased greatly in the OVX-AD mice brain compared with that of sham-AD mice. TEM revealed a larger number of swollen and dark neurons in hippocampus of OVX-AD mice, while more autophagosome was observed around the neuronal processes in OVX-AD mice brain compared with sham-AD mice. Conclusion Estrogen deficiency may lead to delayed maturation of autophagy, decrease the activity and weaken the function of autophagy, which in turn may result in aggravation of pathological features of AD.
ovariectomy; Alzheimer disease; senile plaques; autophagy; mice, transgenic
R749.16
A
0577-7402(2015)01-0026-04
10.11855/j.issn.0577-7402.2015.01.06
2014-05-08;
2014-11-20)
(責任編輯:沈?qū)?
國家自然科學基金(81371221);教育部“新世紀優(yōu)秀人才”支持計劃(NCET-11-1084);留學人員科技活動項目擇優(yōu)資助[渝人社辦(2011)235號];重慶醫(yī)科大學大學生科研與創(chuàng)新實驗項目(201221)
徐明亮,碩士研究生。主要從事阿爾茨海默病發(fā)病機制及治療方面的研究
400016 重慶 重慶醫(yī)科大學神經(jīng)科學研究中心(徐明亮、龍志敏、廖娥、鐘國超、杜燁鴻),解剖學教研室(駱世芳、賀桂瓊)
]賀桂瓊,E-mail:guiqionghe@hotmail.com