羅 勤, 陳竹君,2*, 閆 波, 雷金繁, 張曉敏, 白新祿, 周建斌,2
(1西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,陜西楊凌 712100; 2 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100; 3 楊凌區(qū)農(nóng)業(yè)技術(shù)推廣中心, 陜西楊凌 712100)
水肥減量對日光溫室土壤水分狀況及番茄產(chǎn)量和品質(zhì)的影響
羅 勤1, 陳竹君1,2*, 閆 波1, 雷金繁3, 張曉敏1, 白新祿1, 周建斌1,2
(1西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,陜西楊凌 712100; 2 農(nóng)業(yè)部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100; 3 楊凌區(qū)農(nóng)業(yè)技術(shù)推廣中心, 陜西楊凌 712100)
日光溫室; 番茄; 水肥減量; 產(chǎn)量品質(zhì); 土壤水分狀況
1.1 試驗(yàn)區(qū)概況
表1 供試土壤基本理化性質(zhì)
1.2 試驗(yàn)設(shè)計
溫室基肥施用和植苗時灌水量各處理一致,為當(dāng)?shù)剞r(nóng)戶日光溫室秋冬茬栽培番茄的平均用量(當(dāng)?shù)厍镅硬缡┗?,春夏茬在秋延茬收獲后直接植苗或接近收獲時套栽,一般不施基肥或施用量較少)。其中基肥有機(jī)肥施用干雞糞1.68×104kg/hm2(N、P2O5、K2O含量分別為23、21、19 g/kg),折合N、P2O5、K2O用量分別為393、358、325 kg/hm2;化肥施用史丹利復(fù)合肥、過磷酸鈣和硫酸鉀,折合N、P2O5、K2O的用量見表2。由于當(dāng)?shù)囟ㄖ裁鐣r農(nóng)戶灌水量普遍較大,植苗至第一穗果膨大期(8月5日至9月18日)作物需水量較小,視天氣農(nóng)戶一般不灌水或少量補(bǔ)水。此后每穗果膨大期(間隔10 d左右)灌水追肥一次,因此水肥減量處理從第一穗果膨大期后開始。
表2 不同處理施肥量(N-P2O5-K2O)和灌水量
試驗(yàn)設(shè)3個處理(表2): 常規(guī)水肥處理(CK),植苗后水肥一體化灌水追肥期水肥分別減量20%(S1)及40%處理(S2),即與常規(guī)處理比水分總量分別減少17%和34%,化肥總施氮量減少18%和36%,總P2O5減少5%和9%、總K2O分別減少13%和26%。其中常規(guī)處理灌水量為事先測得的當(dāng)季作物冠層水面蒸發(fā)量 (100%ET),追肥量為農(nóng)戶的平均用量(表2)。每處理重復(fù)3次,完全隨機(jī)區(qū)組排列,小區(qū)面積33.6 m2,每小區(qū)栽植8行,160株番茄。水肥一體化追肥施用尿素和圣誕樹復(fù)合肥 (N-P2O5-K2O為19-8-27)。
1.3 測定項(xiàng)目及方法
土壤水分監(jiān)測 番茄定植后,各處理小區(qū)0—20 cm和20—50 cm土層均埋設(shè)一組英國Skye公司mini DataHog2自動連續(xù)數(shù)采張力計,監(jiān)測土壤水勢變化。然后根據(jù)事先測得日光溫室0—20 cm和20—50 cm土層水分含量與此張力計監(jiān)測的土壤水勢建立土壤水分特征曲線,將監(jiān)測的土壤水勢轉(zhuǎn)換為土壤含水率,進(jìn)而計算一定厚度土層和面積的土壤貯水量等。
圖1 不同水肥處理0—20 cm和 20—50 cm土壤含水率變化Fig.1 Changes of soil water contents in 0-20 cm and 20-50 cm soil layers in different treatments
作物冠層水面蒸發(fā)量測定 用直徑20 cm的蒸發(fā)皿測定日光溫室內(nèi)番茄冠層的水面蒸發(fā)量[1]。
產(chǎn)量及番茄養(yǎng)分吸收和品質(zhì)測定 番茄開始成熟后分小區(qū)連續(xù)計產(chǎn);此外,在番茄盛果期時每小區(qū)采集具有代表性植株5株,分別測定根、莖、葉、果實(shí)生物量及氮、磷、鉀含量,番茄果實(shí)可溶性糖、有機(jī)酸、維生素C等品質(zhì)指標(biāo)。氮、磷、鉀采用 H2SO4-H2O2消煮,半微量凱氏法測定全氮,釩鉬黃法測定全磷,火焰光度法測定全鉀;可溶性糖含量采用蒽酮法測定;有機(jī)酸采用酸堿滴定法測定;維生素C采用2,6-二氯靛酚滴定法測定。
1.4 數(shù)據(jù)處理
試驗(yàn)數(shù)據(jù)采用 Microsoft Excel軟件處理,SAS 8.1進(jìn)行方差分析。
2.1 水肥減量對土壤水分動態(tài)和水分損失的影響
圖2 不同處理0—20 cm和 20—50 cm土層土壤在不同水分范圍的天數(shù)占該生育階段總天數(shù)的比例Fig.2 The proportion of days of different soil moisture ranges in the total growth days of the growth stages of tomato in 0-20 cm and 20-50 cm soil layers under different treatments
圖3 不同處理0—50 cm土壤有效貯水量損失與冠層水面蒸發(fā)量Fig.3 The loss of available water storage in 0-50 cm soil depth and canopy evaporation of tomato in different treatments
圖3顯示,隨灌水量減少0—20和20—50 cm土層有效貯水量損失均呈降低趨勢,而20—50 cm土層有效貯水量損失降低趨勢還說明灌水量高的處理可能存在有效貯水向50 cm以下再分布損失,與前述分析是一致的。CK、S1和S2處理0—50 cm土壤有效貯水量損失分別為冠層水面蒸發(fā)量的77.36%、67.20%和53.46%,平均為65.41%。各處理灌溉量均高于土壤有效貯水量損失,而以S2處理的灌溉量(為冠層水面蒸發(fā)量的65.56%)與土壤有效貯水量損失平均最為接近,從水量平衡看S2處理的灌溉量較為合理。
2.2 不同處理對番茄養(yǎng)分吸收的影響
由表3可以看出,番茄吸收的氮、磷和鉀養(yǎng)分主要分布在果實(shí)和葉片中,其中果實(shí)吸收的氮、磷和鉀分別占植株總攜出量的52.14%、58.13%和64.10%,葉片分別占37.02%、25.18%和30.07%,果實(shí)和葉片占氮、磷、鉀總攜出量的89.14%、83.28%和94.11%。不同處理番茄根、莖、葉、果實(shí)干物質(zhì)和養(yǎng)分?jǐn)y出量有所差異,但差異均不顯著。主要是由于不同處理雖然灌水和施肥量不同,但土壤水分的供應(yīng)均為充足,同時,施用化肥提供的養(yǎng)分量已超過番茄的養(yǎng)分?jǐn)y出量,種植前溫室土壤養(yǎng)分含量亦較高(表1),此外還有有機(jī)肥提供的養(yǎng)分量;因此,雖然追肥期水肥比常規(guī)處理分別減少20%和40%,但對養(yǎng)分的吸收并無顯著影響。
2.3 不同處理對番茄產(chǎn)量、品質(zhì)和灌水利用率的影響
不同處理番茄產(chǎn)量、單果重、維生素C、可溶性糖和有機(jī)酸等雖有所差異,但均未達(dá)顯著水平(表4), 而灌水利用率極顯著提高,從CK處理的55.07 kg/m3提高到S2處理的83.17 kg/m3,提高了51.03%。王峰等[19]在甘肅研究番茄全生育期灌水量由2521 m3/hm2減少到2241 m3/hm2后,灌水利用率由68.38 kg/m3提高至77.87 kg/m3,產(chǎn)量無顯著差異;Eugenio Nardella等[21]在意大利,以當(dāng)?shù)刈畲笳舭l(fā)量70%為灌溉量的灌水利用率為15.35 kg/m3,較日最大蒸發(fā)量灌水利用率11.97 kg/m3提高22%,產(chǎn)量亦無顯著差異;本研究結(jié)果與其他國內(nèi)外一些研究者結(jié)論一致。此外,與CK處理相比,S2處理可節(jié)水523 m3/hm2,節(jié)約N、P2O5、K2O肥料分別為188 kg/hm2、32 kg/hm2和158 kg/hm2;水肥減量在節(jié)約資源的同時,還減少了養(yǎng)分在土壤中的累積及其他不良環(huán)境效應(yīng)。
2.4 合理的灌溉制度
根據(jù)本試驗(yàn)番茄全生育期不同水肥處理對土壤水分狀況、番茄養(yǎng)分吸收量、產(chǎn)量、品質(zhì)的影響,以及灌溉后土壤有效貯水量損失動態(tài)等的結(jié)果分析,結(jié)合當(dāng)?shù)販厥噎h(huán)境內(nèi)不同月份的番茄冠層水分蒸發(fā)以及當(dāng)?shù)剞r(nóng)戶管理習(xí)慣,適當(dāng)降低定植和苗期灌水量,制定出適宜當(dāng)?shù)厍锒绶巡煌诤蛯?yīng)月份合理灌溉制度(表5),為指導(dǎo)當(dāng)?shù)厍锒鐪厥曳阉止芾硖峁┮罁?jù)。
表3 不同處理番茄生物量與養(yǎng)分?jǐn)y出量
注(Note): 同列數(shù)據(jù)后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significant among treatment at the 5% level.
表4 不同處理番茄果實(shí)產(chǎn)量、品質(zhì)及灌水利用率
注(Note): 同列數(shù)據(jù)后不同小、大寫字母分別表示處理間差異達(dá)5%和1%顯著水平 Values followed by different small and capital letters in same column mean significant at the 5% and 1% levels, respectively.
表5 日光溫室栽培秋冬茬番茄灌溉制度
2)不同水肥處理番茄干物質(zhì)累積、養(yǎng)分?jǐn)y出量、番茄產(chǎn)量、品質(zhì)均無顯著性差異,灌水利用率極顯著提高,從常規(guī)水肥處理的55.1 kg/m3提高到83.2 kg/m3,節(jié)水523 m3/hm2,節(jié)約肥料分別為N 188 kg/hm2、P2O532 kg/hm2和K2O 158 kg/hm2。
[1] Wang Z Y, Liu Z X, Zhang Z K, Liu X B. Subsurface drip irrigation scheduling for cucumber (CucumissativusL.) grown in solar greenhouse based on 20 cm standard pan evaporation in Northeast China[J]. Scientia Horticulturae, 2009, 123(1): 51-57.
[2] 李若楠, 張彥才, 黃紹文, 等. 節(jié)水控肥下有機(jī)無機(jī)肥配施對日光溫室黃瓜-番茄輪作體系土壤氮素供應(yīng)及遷移的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2013, 19(3): 677-688. Li R N, Zhang Y C, Huang S Wetal. Effects of combined application of organic manure and chemical fertilizers on soil nitrogen availability and movement under water and fertilizer saving management in cucumber-tomato double cropping system[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 677-688.
[3] 袁亭亭, 楊建平, 徐坤. 秋延遲番茄氮、磷、鉀優(yōu)化施肥方案研究[J]. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(5): 1246-1251. Yuan T T, Yang J P, Xu K. Study on optimization of NPK fertilization scheme of tomato in late autumn[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1246-1251.
[4] 黃紹文, 王玉軍, 金繼運(yùn), 唐繼偉. 我國主要菜區(qū)土壤鹽分、酸堿性和肥力狀況[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(4): 906-918. Huang S W, Wang Y J, Jin J Y, Tang J W. Status of salinity, pH and nutrients in soils in main vegetable production regions in China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 906-918.
[5] 黃紹文. 設(shè)施番茄水肥一體化技術(shù)[J]. 中國蔬菜, 2013, (13): 40-41. Huang S W. Fertigation on tomato in the solar greenhouse[J]. China Vegetable, 2013, (13): 40-41.
[6] 虞娜, 張玉龍, 張玉玲, 等. 灌溉和施肥對溫室番茄產(chǎn)量和品質(zhì)影響效應(yīng)的研究[J]. 中國土壤與肥料, 2009, (4): 31-35. Yu N, Zhang Y L, Zhang Y Letal. Study on effect of irrigation and fertilization on yield and fruit quality of greenhouse tomato[J]. Soil and Fertilizer Sciences in China, 2009, (4): 31-35.
[7] 張輝, 張玉龍, 虞娜, 等. 溫室膜下滴灌灌水控制下限與番茄產(chǎn)量、水分利用效率的關(guān)系[J]. 中國農(nóng)業(yè)科學(xué), 2006, 39(2): 425-432. Zhang H, Zhang Y L, Yu Netal. Relationship between low irrigation limit and yield, water use efficiency of tomato in under-mulching-drip irrigation in greenhouse[J]. Scientia Agricultura Sincia, 2006, 39(2): 425-432.
[8] 曾向輝, 王慧峰, 戴建平, 彭慶彬. 溫室西紅柿滴灌灌水制度試驗(yàn)研究[J]. 灌溉排水學(xué)報, 1999, 18(4): 23-26. Zeng X H, Wang H F, Dai J P, Peng Q B. Study on irrigation regime for tomato under trickle irrigation in greenhouse[J]. Journal of Irrigation and Drainage, 1999, 18(4): 23-26.
[9] 王賀輝, 趙恒, 高強(qiáng), 韓淑敏. 溫室番茄滴灌灌水指標(biāo)試驗(yàn)研究[J]. 節(jié)水灌溉, 2005, (4): 22-25. Wang H H, Zhao H, Gao Q, Han S M. Study on irrigation index for tomato under trickle irrigation in greenhouse[J]. Water Saving Irrigation, 2005, (4): 22—25.
[10] 劉學(xué)軍, 張上寧, 何寶銀. 日光溫室番茄滴灌灌溉制度試驗(yàn)研究[J]. 水資源與水工程學(xué)報, 2010, 21(3): 21-24. Liu X J, Zhang S N, He B Y. Experiment on tomato irrigation schedule by drip irrigation in sunlight greenhouse system[J]. Journal of Water Resources &Water Engineering, 2010, 21(3): 21-24.
[11] 陳碧華, 郜慶爐, 楊和連, 張玉河. 華北地區(qū)日光溫室番茄膜下滴灌水肥耦合技術(shù)研究[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2008, 26(5): 80-83. Chen B H, Gao Q L, Yang H L, Zhang Y H. Studies on water and fertilizer coupling under mulch drip fertilization on tomato in solar-greenhouse in North China[J]. Agricultural Research in the Arid Areas, 2008, 26(5): 80-83.
[12] 郭艷波, 馮浩, 吳普特. 西北地區(qū)不同土壤水分處理對溫室大棚番茄產(chǎn)量和耗水的影響[J]. 自然資源學(xué)報, 2009, 24(1): 50-57. Guo Y B, Feng H, Wu P T. Effects of different soil moisture treatments on yield and water consumption of tomato in greenhouse in northwest China[J]. Journal of Natural Resources, 2009, 24(1): 50-57.
[13] 孫磊, 孫景生, 劉浩, 等. 日光溫室滴灌條件下番茄需水規(guī)律研究[J]. 灌溉排水學(xué)報, 2008, 27(2): 51-54. Sun L, Sun J S, Liu Hetal. Water requirement rules of tomato in sunlight greenhouse[J]. Journal of Irrigation and Drainage, 2008, 27(2): 51-54.
[14] 孫健, 成自勇, 王鐵良, 等. 日光溫室春夏茬番茄灌溉模式試驗(yàn)研究[J]. 節(jié)水灌溉, 2011, (6): 1-3. Sun J, Cheng Z Y, Wang T Letal. Experimental study on suitable irrigation mode of summer tomato in greenhouse[J]. Water Saving Irrigation, 2011, (6): 1-3.
[15] 農(nóng)業(yè)部. 水肥一體化技術(shù)指導(dǎo)意見[J]. 中國農(nóng)技推廣, 2013. Ministry of Agriculture. Issued guidance on the integration of water and fertilizer technology[J]. China Agricultural Technology Extension, 2013.
[16] Li Y J, Yuan B Z, Bie Z Letal. Effect of drip irrigation criteria on yield and quality of muskmelon grown in greenhouse conditions[J]. Agriculture Water Management, 2012, 109: 30-35.
[17] 劉浩, 段愛旺, 孫景生, 劉祖貴. 基于Penman-Monteith 方程的日光溫室番茄蒸騰量估算模型[J]. 農(nóng)業(yè)工程學(xué)報, 2011, 27(9): 208-213. Liu H, Duan A W, Sun J S, Liu Z G. Estimating model of transpiration for greenhouse tomato based on Penman-Monteith equation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 208-213.
[18] 崔寧, 張玉龍, 劉洋, 等. 節(jié)點(diǎn)滲灌灌水控制上限對番茄生長及產(chǎn)量和品質(zhì)的影響[J]. 北方園藝, 2010, (7): 53-56. Cui N, Zhang Y L, Liu Yetal. Effect of different upper irrigation limit on growth, yield and quality of tomato under node permeation irrigation[J]. Northern Horticulture, 2010, (7): 53-56.
[19] 王峰, 杜太生, 邱讓建, 董平國. 虧缺灌溉對溫室番茄產(chǎn)量與水分利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2010, 26(9): 46-52. Wang F, Du T S, Qiu R J, Dong P G. Effects of deficit irrigation on yield and water use efficiency of tomato in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(9): 46-52.
[20] 范鳳翠, 張立峰, 李志宏, 等. 日光溫室番茄控制土壤深層滲漏的灌水量指標(biāo)[J]. 農(nóng)業(yè)工程學(xué)報, 2010, 26(10): 83-89. Fan F C, Zhang L F, Li Z Hetal. Tomato irrigation index for soil water leakage control in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 83-89.
[21] Nardella E, Giuliani M M, Gatta G, Caro A D. Yield response to deficit irrigation and partial Root-Zone drying in processing tomato (LycopersiconesculentumMill.)[J]. Journal of Agricultural Science and Technology, 2012, 2: 209-219.
[22] 許金香, 高麗紅. 日光溫室不同栽培茬口番茄需水量初探[J]. 中國農(nóng)學(xué)通報, 2005, 5(5): 308-312. Xu J X, Gao L H. Primary study on water requirement of tomato in different season in solar greenhouse[J]. Chinese Agricultural Science Bulletin, 2005, 5(5): 308-312.
[23] 韓建會, 徐淑貞. 日光溫室番茄滴灌節(jié)水效果及灌溉制度的評價[J]. 西南農(nóng)業(yè)大學(xué)學(xué)報, 2003, 25(1): 77-79. Han J H, Xu S Z. Water-saving effect of drip irrigation and evaluation of irrigation regimes for tomato production in solar energy greenhouse[J]. Journal of Southwest Agricultural University, 2003, 25(1): 77-79.
Effects of reducing water and fertilizer rates on soil moisture and yield and quality of tomato in solar greenhouse
LUO Qin1, CHEN Zhu-jun1,2 *, YAN Bo1, LEI Jin-fan3, ZHANG Xiao-min1, BAI Xin-lu1, ZHOU Jian-bin1,2
(1CollegeofNaturalResourcesandEnvironment,NorthwestA&FUniversity,Yangling,Shaanxi712100,China; 2KeyLaboratoryofPlantNutritionandtheAgri-EnvironmentinNorthwestChina,MinistryofAgriculture,Yangling,Shaanxi712100,China; 3YanglingAgriculturalTechnologyExtensionStation,Yangling,Shaanxi712100,China)
【Objectives】 Fertigation technology has a great potential to replace the traditional irrigation and fertilization methods in the protected cultivation in China. Soils, climate, and crops require different frequency of irrigation and fertilization. Therefore, effects of different water and nutrient treatments on soil moisture, nutrient uptake, yield and quality of autumn-winter tomato in Guanzhong Plain, Shaanxi was studied. Our aim was to setup the optimum rates of irrigation and fertilization in solar greenhouses. 【Methods】 The field trial included three treatments, the conventional treatment (CK) in which irrigation rate equaled to 100% evapotranspiration and average rates of fertilizers used by local farmers were applied (conventional fertilizer treatment), and reducing 20% and 40% of water and fertilizer rates in comparison with CK (S1 and S2). The fertilizers were added into the irrigation system with Venturi tube during the crop growth. Soil moisture in 0-20 cm and 20-50 cm layers was continuously monitored by an automatic tension meter system (Skye DataHog2, UK). Soil water content was calculated with soil water characteristic curve. water surface evaporation was determined with the evaporating dish method (diameter 20 cm), and its relationship with loss of soil available water was analyzed. The nutrient absorption, yield, quality, irrigation utilization of autumn-winter tomato in different treatments were also determined. 【Results】 1) The soil relative water contents are higher 75% in 0-50 cm soil layer in all the treatments throughout the whole growing period of tomato, indicating soil water supply is adequate for tomato growth. The soil water contents in 0-20 cm and 20-50 cm soil layers in the conventional treatment reach or exceed the field capacity after irrigation, which indicates that water infiltrated below 50 cm soil layer and would result in nutrient leaching. Compared with CK, the soil relative water contents in the treatment of reducing 40% of water and fertilizer rates are mainly in optimum range from 75% to 85%. 3)When reducing the irrigation rate, the water loss from 0-50 cm soil layer is decreased, and the loss of effective storage water equals 65.4% of the canopy water evaporation, and also equals to the irrigation amount in the S2 treatment. 3)There are not significant differences in nutrient absorption, yield and quality of tomato among the different treatments. However, the use efficiency of irrigation water is increased from 55.1 kg/m3in the conventional treatment to 83.2 kg/m3in the water and nutrient saving treatments. 【Conclusions】 The optimum irrigation rate for the solar greenhouse in the study region is 65% of water surface evaporation. The appropriate irrigation quota for the autumn-winter tomato in solar greenhouse is 1057 m3/ha, the irrigation amounts in August, September, October, November and December are 168, 169, 132, 105, and 50 m3/ha, respectively, and the time intervals of irrigation in August, September, October, and November are 20-30 days, 8-13 days, 8-13 days, and 20-30 days, respectively and the irrigation in December is dependent on climate, either less rate or no irrigation. No irrigation is needed in January.
solar greenhouse; tomato; water and fertilizer saving; yield and quality; soil moisture
2014- 01- 02 接受日期: 2014-08-26
陜西省農(nóng)業(yè)攻關(guān)項(xiàng)目(2014K01-14-03);國家“十二五”科技支撐計劃項(xiàng)目課題(2012BAD15B04);高等學(xué)校學(xué)科創(chuàng)新引智計劃(B12007);中英農(nóng)業(yè)生產(chǎn)中養(yǎng)分資源可持續(xù)利用合作項(xiàng)目資助。
羅勤(1989—),女,新疆塔城人,碩士研究生,主要從事設(shè)施栽培水肥調(diào)控技術(shù)研究。E-mail: luoqin153@163.com * 通信作者 Tel: 029-87082793, E-mail: zjchen@nwsuaf.edu.cn
S152.7; S614.2.606
A
1008-505X(2015)02-0449-09