馬 超, 黎定仕
(西南交通大學(xué)數(shù)學(xué)學(xué)院,四川成都610031)
微分積分方程穩(wěn)定性的問題具有其特定的物理意義,許多學(xué)者對其進(jìn)行了深入的探究[1-6].微分積分方程在多個科學(xué)領(lǐng)域中,如控制理論、生物、經(jīng)濟(jì)、醫(yī)學(xué)等都會遇見,考慮其后效反應(yīng)或者時滯狀態(tài)[7-8]已經(jīng)成為了必要.特別地,人們常常用微分積分方程來描述具有遺傳性質(zhì)的模型.而在這些領(lǐng)域中常見的時滯現(xiàn)象包括常數(shù)時滯和變量時滯[9-14],但是由于存在大量軸突大小和長度類似的路徑,微分積分方程常常會有空間上的外延性.于是,會有沿著這些路徑的傳導(dǎo)速度和傳播時滯的不同的現(xiàn)象產(chǎn)生.在這種情況下,信號的傳播不再是瞬間的,也不能用離散時滯來模擬,從而就出現(xiàn)了一種更為合適的描述,即連續(xù)的分布式時滯.
本文研究如下非自治微分積分方程
[1]Zhao H Y.Global asymptotic stability of Hopfield neural network involving distributed delays[J].Neural Networks,2004,17:47-53.
[2]Zhang Q,Wei X P,Xu J.Global exponential stability of Hop-field neural networks with continuously distributed delays[J].Phys Lett,2003,A315:431-436.
[3]Tian H J.The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag[J].J Math Anal Appl,2002,270:143-149.
[4]龍述君.具有分布時滯的脈沖Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)的指數(shù)穩(wěn)定性[J].四川師范大學(xué)學(xué)報:自然科學(xué)版,2009,32(1):68-71.
[5]莊劉,龍述君.一類中立型隨機泛函微分方程的穩(wěn)定性分析[J].四川師范大學(xué)學(xué)報:自然科學(xué)版,2011,34(4):488-492.
[6]龍述君,張永新,向麗.具有混合時滯的隨機細(xì)胞神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性分析[J].四川師范大學(xué)學(xué)報:自然科學(xué)版,2012,35(6):796-801.
[7]Hu L,Gao H J,Zheng W X.Novel stability of cellular neural networks with interval time-varying delay[J].Neural Networks,2008,21:1458-1463.
[8]Wang X H,Guo Q Y,Xu D Y.Exponentialp-stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays[J].Math Comput Simul,2009,79:1698-1710.
[9]Liao X F,Wong K W,Li C G.Global exponential stabilityfor a class of generalized neural networks with distributed delays[J].Nonlinear Anal:RWA,2004,5:527-547.
[10]Xu D Y,Yang Z C.Impulsive delay differential inequality and stability of neural networks[J].J Math Anal Appl,2005,305:107-120.
[11]Yang Z C,Xu D Y.Stability analsis of delay neural networks with impulsive effects[J].Ieee Transactions on Circuits and Systems-Ⅱ:Express Briefs,2005,52:517-521.
[12]Xu L G,Xu D Y.Exponential stability of nonlinear impulsive neutral integro-differential equations[J].Nonlinear Anal,2008,69:2910-2923.
[13]Sun Y H,Cao J D.p-th moment exponential stability of stochastic recurrent neural networks with time-varying delays[J].Nonlinear Anal:RWA,2007,8:1171-1185.
[14]Zhang H G,Wang G.New criteria of global exponential stability for a class of generalized neural networks with time-varying delays[J].Neurocomputing,2007,70:2486-2494.
[15]Long S J,Xu D Y,Zhu W.Global exponential stability of impulsive dynamical systems with distributed delays[J].Electronic J Quanlitative Theory of Differential Equations,2007,10:1-13.